

Low peripheral blood CCL5 and TNF α gene expression is associated with unfavorable progression of respiratory syncytial virus bronchiolitis in infants

Carlos Pita-Martínez , Carmen Goez-Sanz , Ana Virseda-Berdices , Alejandro Gonzalez-Praetorius , Esther Mazario-Martín , María Rodriguez-Mesa , Rafael Amigot-Sánchez , Vanesa Matías , Salvador Resino , Isidoro Martínez

PII: S1201-9712(23)00783-X
DOI: <https://doi.org/10.1016/j.ijid.2023.11.024>
Reference: IJID 6904

To appear in: *International Journal of Infectious Diseases*

Received date: 9 September 2023
Revised date: 24 October 2023
Accepted date: 18 November 2023

Please cite this article as: Carlos Pita-Martínez , Carmen Goez-Sanz , Ana Virseda-Berdices , Alejandro Gonzalez-Praetorius , Esther Mazario-Martín , María Rodriguez-Mesa , Rafael Amigot-Sánchez , Vanesa Matías , Salvador Resino , Isidoro Martínez , Low peripheral blood CCL5 and TNF α gene expression is associated with unfavorable progression of respiratory syncytial virus bronchiolitis in infants, *International Journal of Infectious Diseases* (2023), doi: <https://doi.org/10.1016/j.ijid.2023.11.024>

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license
(<http://creativecommons.org/licenses/by-nc-nd/4.0/>)

Highlights

- An association was found between PBMC gene expression and RSV progression.
- Infants with unfavorable progression had lower baseline levels of *CCL5* and *TNF α* .
- *CCL5* and *TNF α* appear to affect the progression of RSV bronchiolitis.

Descargado para Anonymous User (n/a) en Community of Madrid Ministry of Health. Solo se permite el uso personal exclusivamente. No se permiten otros usos sin autorización.

Title Page

Type of manuscript: Short Communication

Title: Low peripheral blood *CCL5* and *TNF α* gene expression is associated with unfavorable progression of respiratory syncytial virus bronchiolitis in infants

Running head: *CCL5* and *TNF α* expression in RSV bronchiolitis progression

Authors: Carlos Pita-Martínez ^{1,†}, Carmen Goez-Sanz ^{2,3,†}, Ana Virseda-Berdices ^{1,4,†}, Alejandro Gonzalez-Praetorius ⁵, Esther Mazario-Martín ⁶, María Rodriguez-Mesa ⁷, Rafael Amigot-Sánchez ¹, Vanesa Matías ^{3,‡}, Salvador Resino ^{1,4,‡,*}, Isidoro Martínez ^{1,4,‡}

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización.

(†) Carlos Pita-Martínez, Carmen Goez Sanz, and Ana Virseda Verdices contributed equally.

(‡) Vanesa Matías, Salvador Resino, and Isidoro Martínez contributed equally.

(*), Salvador Resino and Isidoro Martínez are the corresponding authors.

Authors' Affiliations:

(1), Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.

(2), Gerencia de Atención Primaria Valladolid Oeste, Centro de Salud Delicias II, Valladolid, Spain.

(3), Servicio de Pediatría, Hospital clínico Universitario de Valladolid, Valladolid, Spain.

(4), Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.

(5), Servicio de Microbiología, Hospital Universitario de Guadalajara, Guadalajara, Spain.

(6), Servicio de Pediatría, Hospital Universitario de Guadalajara, Guadalajara, Spain.

(7), Servicio de Pediatría, Hospital Universitario Infanta Cristina, Parla, Spain

Emails:

Carlos Pita-Martínez: pitamartinezcarlos@gmail.com

Carmen Goez Sanz: mgoez@saludcastillayleon.es

Ana Virseda Berdices: anavirseda@externos.isciii.es

Alejandro González Praetorius: agonzalezp@sescam.jccm.es

Esther Mazario Martín: esthermazario@gmail.com

María Rodríguez Mesa: mdrodriguezm.hcsc@salud.madrid.org

Rafael Amigot Sánchez: ramigots@gmail.com

Vanesa Matías: vmatias@saludcastillayleon.es

Salvador Resino: sresino@isciii.es

Isidoro Martínez: imago@isciii.es

Corresponding authors:

Corresponding author: Salvador Resino; Centro Nacional de Microbiología, Instituto de Salud

Carlos III (Campus Majadahonda); Carretera Majadahonda- Pozuelo, Km 2.2; 28220

Majadahonda (Madrid); Phone: +34918223266. E-mail: sresino@isciii.es

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización

Character count of Title: 149

Word count of Text: 1286

Character count of Running Head: 57

Count of References: 11

Word count of Abstract: 199

Count of Tables: 2

Word count of Keywords: 6

Count of Figures: 0

Journal Pre-proof

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización

Abstract

Objective: We aimed to analyze whether the expression of inflammatory and antiviral genes in respiratory syncytial virus (RSV)-infected infants' peripheral blood is associated with bronchiolitis progression.

Methods: We conducted a prospective study on 117 infants between 2015 and 2023. The expression levels of nine genes were quantified by quantitative PCR. Infants were classified according to their clinical evolution during hospital admission: i) non-progression (n=74), when the RSV bronchiolitis severity remained stable or improved; ii) unfavorable progression (n=43), when the RSV bronchiolitis severity increased. The association analysis was performed by logistic regression, adjusted by age, gender, prematurity, and RSV bronchiolitis severity in the emergency room.

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización

Results: Infants were 57.3% male, and the median age of the study population was 61 days. Thirty-five infants (30.7%) were admitted to the intensive care unit after hospital admission. Univariate logistic models showed that *TNF α* and *CCL5* gene expression at baseline were inversely associated with unfavorable progression, which was confirmed by multivariate analyses: *TNF α* (aOR=0.8 (95%CI=0.64 - 0.99), p-value=0.038) and *CCL5* (aOR=0.76 (95%CI=0.62 - 0.93), p-value=0.007).

Conclusion: An inadequate immune response to RSV, characterized by reduced gene expression levels of *CCL5* and *TNF α* in peripheral blood, was associated with an unfavorable progression of RSV bronchiolitis.

Key Words

Respiratory syncytial virus; bronchiolitis; gene expression; *TNF α* ; *CCL5*; peripheral blood

Introduction

Respiratory syncytial virus (RSV) infection in infants ranges from asymptomatic or mild upper respiratory infections to severe lower respiratory tract infections, primarily bronchiolitis, requiring hospitalization and intensive care [1]. Ribonucleic acids (RNAs) and double-stranded RNA (dsRNA) generated during RSV replication are recognized by retinoic-acid-inducible gene I (IG-I) and Toll-like Receptors, triggering intracellular signaling pathways that induce the expression of proinflammatory cytokines, chemokines, and interferons (IFN) [2]. IFN-mediated signaling upregulates the expression of numerous interferon-stimulated genes and establishes an antiviral state to restrict viral replication. However, an imbalanced immune response can lead to immunopathology [2]. Consequently, an inadequate immune response that fails to control RSV replication is associated with

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización

increased disease severity, while a robust innate immune response controls RSV spreading and decreases bronchiolitis severity [2]. Nevertheless, the underlying mechanisms contributing to RSV pathology remain unclear, and no robust biomarkers have been identified that accurately define who will develop severe RSV disease [3]. The early detection of high-risk infants can help improve disease management and reduce RSV infection-related sequelae.

We aimed to analyze whether the expression of inflammatory and antiviral genes in RSV-infected infants' peripheral blood is associated with RSV bronchiolitis progression.

Methods

We carried out a prospective study on 117 RSV-infected infants under the age of two years. The samples were collected between 2015 and 2023 in the Pediatric Service at Hospital Clínico de Valladolid, Hospital Infanta Cristina, and Hospital Universitario de Guadalajara, Spain. All patients tested positive for RSV by a polymerase chain reaction (PCR) test. The

study was performed according to the Declaration of Helsinki. It was approved by the Ethics Committee of Instituto de Salud Carlos III (PI 84_2015-v2) and the Institutional Review Board of the respective hospitals. All infants' parents or legal guardians provided informed consent.

The Bronchiolitis score of Sant Joan de Déu (BROSJDD) and the Wood-Downes score (WDS) were used to calibrate the RSV bronchiolitis severity at baseline and during the follow-up. The BROSJDD range from 1 to 16, stratifying the population into mild (≤ 5), moderate (6-10), and severe (≥ 11) bronchiolitis. The WDS range from 1 to 10, stratifying the population into mild (≤ 3), moderate (4-7), and severe (≥ 8) bronchiolitis. Infants were classified according to their clinical evolution during hospital admission: i) non-progression, when the bronchiolitis severity remained stable (mild or moderate) or improved during follow-up (moderate to mild); ii) unfavorable progression, when the bronchiolitis severity increased from baseline (mild to moderate, mild to severe, and moderate to severe).

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización.

Whole blood samples were obtained within the first 24 hours of admission to the emergency room and stored at -80°C . Total RNA was extracted using the NucleoSpin RNA Kit (Macherey-Nagel, Düren, Germany) and reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). The expression of the selected genes was quantified by real-time PCR (RT-PCR) using the TaqMan Gene Expression Assays (Applied Biosystems, Foster City, CA, USA) described in **Supplementary Table 1**. PCR assays were performed in triplicate using a StepOne RT-PCR System thermal cycler (Applied Biosystems). Differential expression analysis was performed by the Ct (Cycle threshold) ($\Delta\Delta\text{CT}$) method, using *ACTB* as endogenous control. Gene expression levels were determined relative to a calibrator from a reference sample of total RNA extracted from RSV-infected A549 cells.

Statistical analysis was performed using Stata IC 17 (StataCorp, Texas, USA). All p-values were two-tailed, and the significance level was set at 0.05. Mann-Whitney U-test for continuous

variables and Pearson's Chi-square test (χ^2) or Fisher's exact test for categorical variables were used for between-group comparison. Binomial logistic regression was used to estimate the association between biomarkers at baseline and the unfavorable progression during follow-up, providing odds ratio (OR), 95% confidence intervals (CIs), and p-values, which were corrected for multiple testing using the false discovery rate (q-value). Biomarkers with q-value <0.1 were selected for logistic regression analyses adjusted by the most significant covariates (age, gender, prematurity, and baseline RSV bronchiolitis severity), which were selected by a stepwise forward selection method ($\text{pin} <0.05$ and $\text{pout} <0.10$).

Results

Infants were 57.3% male, and the median age was 61 days. The main symptoms observed were rhinorrhea, dyspnea, acute otitis media, vomiting, and feeding intolerance. Thirty-five infants (30.7%) were admitted to the pediatric intensive care unit (PICU) after hospital admission (**Table 1**). Infants who did not progress had a higher frequency of vomiting, greater weight, and lower frequency of PICU admission than those with unfavorable progression ($p<0.05$).

At the time of hospital admission, 41 infants had mild bronchiolitis, while 76 had moderate bronchiolitis. There were no significant differences in gene expression values between the groups (**Supplementary Figure 1**; q-value <0.1).

During follow-up, 64.3% (27/42) of infants with mild bronchiolitis and 20.8% (16/77) with moderate bronchiolitis exhibited unfavorable progression. Those with an unfavorable progression showed lower *TNF α* and *CCL5* expression levels at baseline than those with stable clinical course (**Figure 1**; q-value <0.1). These findings were further confirmed by multivariate

logistic regression: $TNF\alpha$ (aOR=0.8 (95%CI=0.64-0.99), p-value=0.038) and $CCL5$ (aOR=0.76 (95%CI=0.62-0.93), p-value=0.007).

Discussion

The host's immune response against RSV is crucial in controlling and clearing the infection.

Our study showed that low gene expression of $CCL5$ and $TNF\alpha$ in PBMCs was associated with unfavorable progression of RSV bronchiolitis in infants. Peripheral blood can serve as a liquid biopsy for studying lung immunity against viral infections and for identifying predictive biomarkers, owing to the close connection between the circulatory and respiratory systems [4]. Furthermore, it provides valuable information about the systemic immune response triggered by the infection.

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización.

$CCL5$ is a chemokine that plays a pivotal role in the host immune response by attracting monocytes, T cells, neutrophils, and eosinophils. It also promotes macrophage survival, which is essential for virus control [5]. In line with this, other studies found an inverse correlation between $CCL5$ levels in the tracheal aspirate and nasal fluid samples and the severity of RSV infection [6]. These findings suggest that reduced $CCL5$ levels might significantly impact the immune systems' capacity to recruit and activate inflammatory cells necessary for controlling RSV infection [7]. Furthermore, it has been postulated that $CCL5$ exhibits a direct antiviral effect on RSV by inhibiting the interaction between RSV fusion protein and epithelial cells [8]. Our findings have also been corroborated in SARS-CoV-2 infection, where low $CCL5$ levels have been linked to disease severity [9].

$TNF\alpha$ is a proinflammatory cytokine that plays a crucial role in the host response to infection by mediating immune and inflammatory responses and inducing autocrine expression of other cytokines, including $IL6$ and chemokines such as $CCL5$ [2]. Previous studies have

demonstrated that TNF α acts as a protective factor against RSV infection, consistent with our findings, where patients who maintained a stable clinical course exhibited higher levels of TNF α and IL6 upon admission [10]. Moreover, low levels of TNF α and IL6 increased the likelihood of hospitalization [11].

CCL5 and *TNF α* gene expression could serve as potential predictive biomarkers in the clinical setting, using a qPCR assay that is easily applicable in the hospital environment. However, it is essential to note that our study should be considered preliminary. In this context, the *CCL5* and *TNF α* gene expression levels significantly differed between the groups. However, there was a partial overlap, which makes it difficult to consider them as biomarkers with high predictive performance. Furthermore, our study has several limitations, including evaluating a limited number of biomarkers and a small sample size. Consequently, further studies are warranted to validate our findings.

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización

In conclusion, *CCL5* and *TNF α* seem to be essential components of an immune response that effectively controls the progression of RSV infection since reduced gene expression levels of *CCL5* and *TNF α* in peripheral blood were associated with an unfavorable outcome. These genes are promising biomarkers of the clinical course of RSV bronchiolitis and provide valuable information on the immunopathology of RSV infection.

List of abbreviations

RSV, respiratory syncytial virus

RNAs, ribonucleic acids

dsRNA, double-stranded RNA

RIG-I, retinoic-acid-inducible gene I

IFN, interferons

PICU, pediatric intensive care unit

PCR, polymerase chain reaction

RT-PCR, real-time polymerase chain reaction

BROSJDD, bronchiolitis score of Sant Joan de Déu

WDS, Wood-Downes score

ISG15, interferon-stimulated gene 15

IFN β , interferon beta

TNF α , tumor necrosis factor alpha

IL6, interleukin 6

IL8, interleukin 8

CCL5, chemokine (C-C motif) ligand 5

CXCL10, C-X-C motif chemokine ligand 10

RIGI, retinoic acid-inducible gene I

OR, odds ratio

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización

Declarations

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding authors upon reasoned request.

Competing interests

The authors declare that they have no competing interests.

Funding

The study was funded by the CIBER -Consorcio Centro de Investigación Biomédica en Red- (CB 2021), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea – NextGenerationEU (grant # CB21/13/00044 to SR).

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización

Acknowledgments

This study would not have been possible without the collaboration of all the patients, medical and nursery staff, and data managers who participated in the project.

Author contributions

Funding acquisition: SR.

Study concept and design: SR and IM.

Patients' selection and clinical data acquisition: CGS, AGP, EMM, MRM, and VM.

Sample preparation, RNA isolation, and RT-PCRs: CPM, AVV, and RAS.

Statistical analysis and interpretation of data: CPM, AVV, and SR.

Writing – original draft preparation: CPM, SR, and IM.

Writing – Review & Editing: CGS, AVV, and VM.

Supervision and visualization: SR and IM.

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización

Journal Pre-proof

References

[1]. Walsh EE: **Respiratory Syncytial Virus Infection: An Illness for All Ages.** *Clin Chest Med* 2017, **38**(1):29-36.

[2]. Russell CD, Unger SA, Walton M, Schwarze J: **The Human Immune Response to Respiratory Syncytial Virus Infection.** *Clin Microbiol Rev* 2017, **30**(2):481-502.

[3]. Öner D, Drysdale SB, McPherson C, Lin GL, Janet S, Broad J, Pollard AJ, Aerssens J, Investigators R: **Biomarkers for Disease Severity in Children Infected With Respiratory Syncytial Virus: A Systematic Literature Review.** *J Infect Dis* 2020, **222**(Suppl 7):S648-S657.

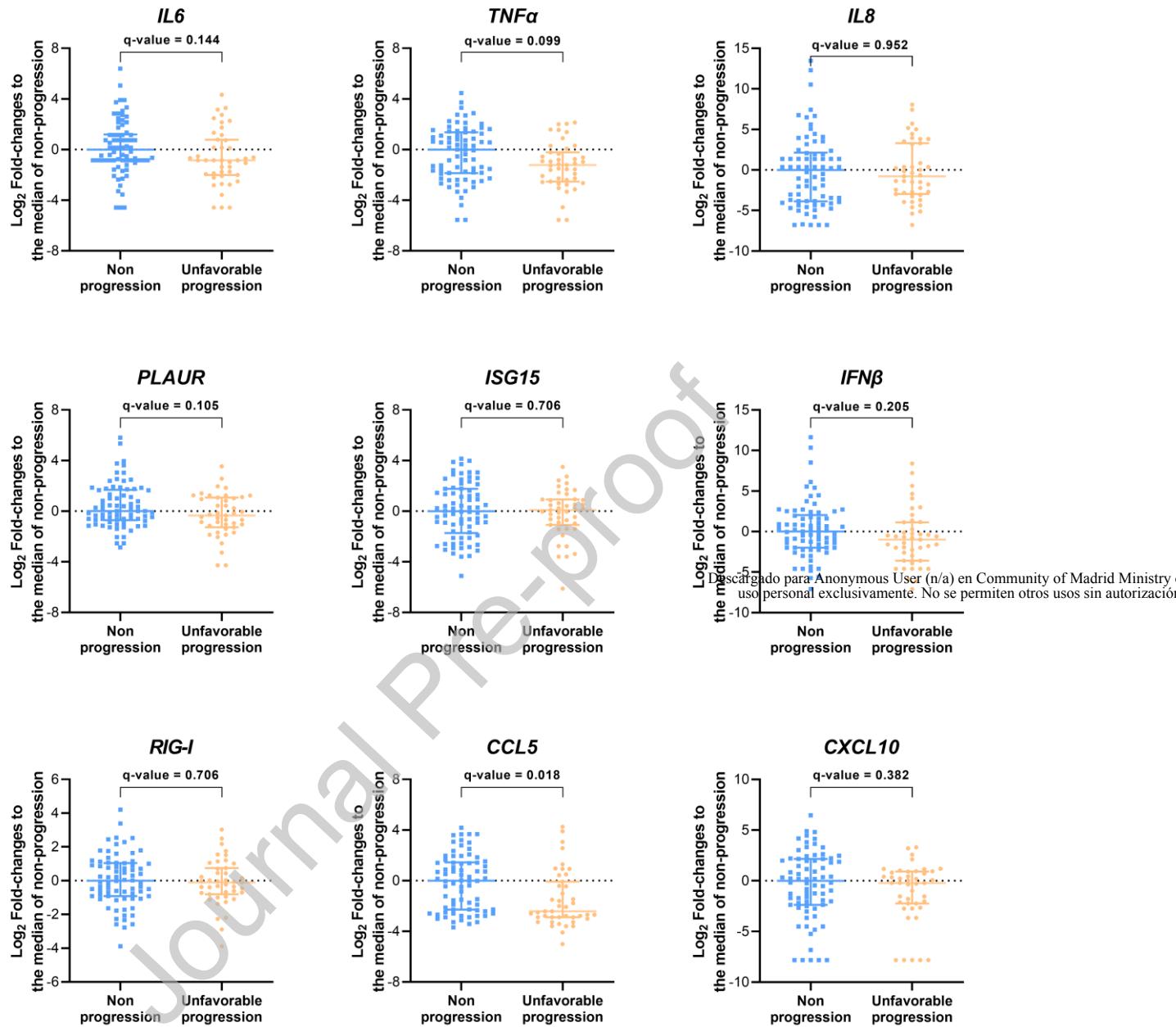
[4]. Sims JT, Poorbaugh J, Chang CY, Holzer TR, Zhang L, Engle SM, Beasley S, Doman TN, Naughton L, Higgs RE *et al*: **Relationship between gene expression patterns from nasopharyngeal swabs and serum biomarkers in patients hospitalized with COVID-19, following treatment with the neutralizing monoclonal antibody bamlanivimab.** *J Transl Med* 2022, **20**(1):134.

[5]. Tyner JW, Uchida O, Kajiwara N, Kim EY, Patel AC, O'Sullivan MP, Walter MJ, Schwendener RA, Cook DN, Danoff TM *et al*: **CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection.** *Nat Med* 2005, **11**(11):1180-1187.

[6]. Thwaites RS, Coates M, Ito K, Ghazaly M, Feather C, Abdulla F, Tunstall T, Jain P, Cass L, Rapeport G *et al*: **Reduced Nasal Viral Load and IFN Responses in Infants with Respiratory Syncytial Virus Bronchiolitis and Respiratory Failure.** *Am J Respir Crit Care Med* 2018, **198**(8):1074-1084.

[7]. Narayanan D, Grayson MH: **Comparing respiratory syncytial virus and rhinovirus in development of post-viral airway disease.** *J Asthma* 2022, **59**(3):434-441.

[8]. Nuriev R, Johansson C: **Chemokine regulation of inflammation during respiratory syncytial virus infection.** *F1000Res* 2019, **8**.


[9]. Pérez-García F, Martín-Vicente M, Rojas-García RL, Castilla-García L, Muñoz-Gómez MJ, Hervás Fernández I, González Ventosa V, Vidal-Alcántara EJ, Cuadros-González J, Bermejo-Martin JF *et al*: **High SARS-CoV-2 Viral Load and Low CCL5 Expression Levels in the Upper Respiratory Tract Are Associated With COVID-19 Severity.** *J Infect Dis* 2022, **225**(6):977-982.

[10]. Neuzil KM, Tang YW, Graham BS: **Protective Role of TNF-alpha in respiratory syncytial virus infection in vitro and in vivo.** *Am J Med Sci* 1996, **311**(5):201-204.

[11]. Brown PM, Schneeberger DL, Piedimonte G: **Biomarkers of respiratory syncytial virus (RSV) infection: specific neutrophil and cytokine levels provide increased accuracy in predicting disease severity.** *Paediatr Respir Rev* 2015, **16**(4):232-240.

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización

Figure legends

Figure 1. Gene expression of *IL6*, *TNF α* , *IL8*, *PLAUR*, *ISG15*, *IFN β* , *RIG-I*, *CCL5*, and *CXCL10* in peripheral blood according to respiratory syncytial virus (RSV) bronchiolitis progression in infants during the follow-up (non-progression vs. unfavorable progression).

Statistics: Gene expression levels are expressed as a Log2 fold-change to the median of the non-progression group. The differences between groups were assessed using univariate logistic regression. P-values were adjusted by False Discovery Rate (q-value).

Abbreviations: IL-6, interleukin 6; TNF α , tumor necrosis factor α ; IL-8, interleukin 8; PLAUR, plasminogen activator, urokinase receptor; ISG15, interferon-stimulated gene 15; IFN- β , interferon-beta; RIGI, retinoic acid-inducible gene I, CCL5, chemokine (C-C motif) ligand 5; CXCL10, C-X-C motif chemokine ligand 10; p-value, level of significance.

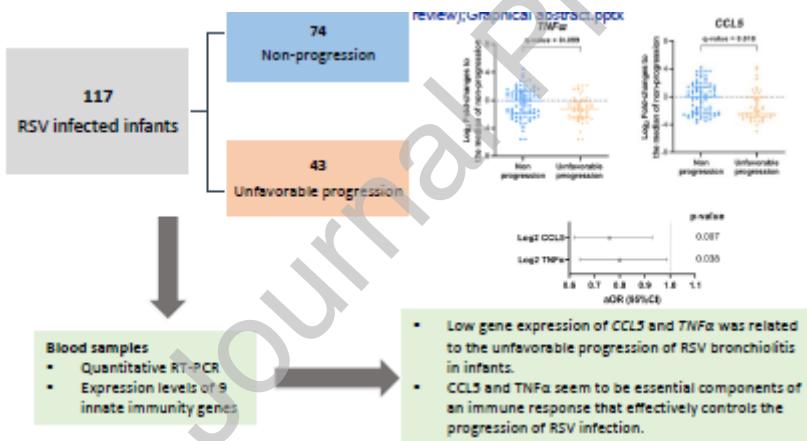
Table 1. Summary of characteristics of RSV patients according to the progression of respiratory syncytial virus disease severity.

Characteristic	All	Non progression	Unfavorable progression	p
No. Patients	117	74	43	
Age (days)	61 (30.5-137.2)	61 (30.5-152.5)	61 (28-91.5)	0.089
Gender (male)	67 (57.3%)	42 (56.8%)	25 (58.1%)	0.884
Medical history				
< 6 weeks	46 (39.3%)	26 (35.1%)	20 (46.5%)	0.225
Weight (kg)	5.3 (4-6.9)	5.6 (4.4-8)	4.1 (3.6-5.7)	0.001
Breastfeeding	88 (80%)	55 (79.7%)	33 (80.5%)	0.921
Prematurity	4 (3.4%)	1 (1.4%)	3 (6.9%)	0.106
Family history of allergy, asthma, or atopy	26 (27.4%)	18 (31.0%)	8 (21.6%)	0.316
Clinic and admission				
The onset of respiratory symptoms (days)	3 (2-4)	3 (2-4)	3 (2-4)	0.176
Rhinorrhea	113 (96.6%)	71 (95.9%)	42 (97.7%)	0.620
Dyspnea	78 (67.2%)	49 (66.2%)	29 (67.4%)	0.972
AOM (Acute otitis media)	9 (7.8%)	6 (8.3%)	3 (6.9%)	0.793
Vomiting	40 (35.4%)	31 (43.7%)	9 (21.4%)	0.017
Feeding intolerance	31 (26.5%)	20 (27.0%)	11 (25.9%)	0.864
Rf > 60	44 (37.6%)	29 (39.2%)	15 (34.9%)	0.643
O2 saturation < 91	89 (76.1%)	59 (79.7 %)	30 (69.8%)	0.223
Laboratory findings				
Respiratory frequency	57 (50-62)	60 (50-62)	55 (46-64)	0.369
Cardiac frequency	155 (140-170)	153 (140-170)	158 (143-170)	0.398
Gasometry				
pH	7.4 (7.3-7.4)	7.4 (7.3-7.4)	7.3 (7.3-7.4)	0.288
PCO2	47.1 (41-55)	45.9 (41-53.3)	51 (41.3-57.5)	0.256
PO2	44.3 (37-55.2)	43.6 (37-54.2)	50.5 (38.2-58.7)	0.589
HCO3	25 (23.1-27.4)	24.9 (23.2-27)	25.8 (22.4-29.1)	0.739
Blood count (x 10³ cells/μl)				
Lymphocytes	47.4 (34.8-56)	48 (35.4-56)	46.5 (34.3-56)	0.548
Neutrophils	40 (30.8-52)	40.1 (31-53.1)	38.5 (29.1-49.6)	0.716
Mastocytes	9.3 (6.7-13.1)	9.3 (7.1-12.6)	9.5 (6.3-13.2)	0.940
Eosinophils	0.4 (0-1.2)	0.4 (0-1)	0.6 (0.1-1.6)	0.484
Basophils	0.2 (0-0.4)	0.2 (0-0.4)	0.3 (0.1-0.7)	0.534

Treatment

Bronchodilator	63 (54.3%)	37 (50.7%)	26 (60.5%)	0.307
Beta-2 agonists	47 (40.1%)	28 (37.8%)	19 (44.2%)	0.499
Adrenaline	66 (56.4%)	40 (54.1%)	26 (60.5%)	0.500
Systemic corticoids	15 (12.8%)	10 (13.5%)	5 (11.6%)	0.769
Antibiotherapy	43 (36.8%)	26 (35.1%)	17 (39.5%)	0.634

Evolution and events


Hospitalization days	7 (4-10)	7 (4-9)	7 (5-12)	0.106
O2 days	5 (3-8)	5 (2-7)	6 (4-10)	0.059
NIMV (days)	4 (0-6)	3.5 (0-6)	4 (0-8)	0.268
PICU	35 (30.7%)	16 (21.9%)	19 (46.3%)	0.007
Viral coinfection	45 (38.5%)	29 (39.2%)	16 (37.2%)	0.991

Statistics: Values are expressed as the median and interquartile range (IQR) for continuous variables and absolute count (percentage) for categorical variables. The statistically significant differences are shown in bold.

Abbreviations: IQR, interquartile range; AOM, Acute otitis media; RSV, Respiratory syncytial virus; Rf, Respiratory frequency; PICU, Pediatric Intensive Care Unit; NIMV, noninvasive mechanical ventilation.

Graphical Abstract

Descargado para Anonymous User (n/a) en Community of Madrid Ministry
uso personal exclusivamente. No se permiten otros usos sin autorización.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships, which may be considered as potential competing interests:

Descargado para Anonymous User (n/a) en Community of Madrid Ministry of Education and Research. Se permite el uso personal exclusivamente. No se permiten otros usos sin autorización.