

ORIGINAL ARTICLE

- The impact of frailty on intra-hospital survival in older
- patients with COVID-19 infection: the importance of
- early identification. SEMI-COVID National Registry

7 Q2 A. López-Sampalo^a, H. Hernández-Negrín^a, M.-R. Bernal-López^{a,b,*}, M. Rubio-Rivas^c,

- M.D. Martín-Escalante^d, P. Wikman-Jogersen^e, A. García-Reyne^f, R.F.-M. Martinez^g,
- M. Gómez-Antúnez^h, J. Luis Beato-Pérezⁱ, J. David Torres-Peña^j,
- J. Ángel Martín-Oterino^k, J. Loureiro-Amigo¹, J. Vicente de la Sota^m,
- R. Gil-Sánchezⁿ, M.L.-L. Reboiro^o, B. Bernal-Román^p, J. Fernández-Sola^q,
- F. Amorós-Martínez^r, N. Vicente-López^s, R. Valle-Bernard^t, A. López-Ruiz^u,
- J.-M. Ramos-Rincón^{v,1}, R. Gómez-Huelgas^{a,b,1}
- ¹⁴ ^a Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomedica de Málaga (IBIMA-15 Q4 Plataforma BIONAND), University of Málaga (UMA), Málaga, Spain
- ^b Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III,
 Madrid, Spain
- ¹⁸ ^c Internal Medicine Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, University of ¹⁹ Barcelona, Barcelona, Spain
- ²⁰ ^d Internal Medicine Department, Costa del Sol Hospital, Marbella, Málaga, Spain
- ²¹ ^e Internal Medicine Department, San Juan University Hospital, Alicante, Spain
- 22 ^f Internal Medicine Department, 12 de Octubre University Hospital, Madrid, Spain
- 23 ^g Internal Medicine Department, Cabueñes University Hospital, Gijón, Spain
- 24 ^h Internal Medicine Department, Gregorio Marañón University Hospital, Madrid, Spain
- ²⁵ ⁱ Internal Medicine Department, Albacete University Hospital Complex, Albacete, Spain
- ²⁶ ^j Internal Medicine Department, Reina Sofia University Hospital, Córdoba, Spain
- 27 ^k Internal Medicine Department, Salamanca University Health Care Complex, Salamanca, Spain
- ²⁸ ¹ Internal Medicine Department, Moisès Broggi Hospital, Sant Joan Despí, Barcelona, Spain
- ²⁹ ^m Internal Medicine Department, Infanta Cristina University Hospital, Parla, Madrid, Spain
- ³⁰ ⁿ Internal Medicine Department, La Fe University Hospital, Valencia, Spain
- ³¹ ^o Internal Medicine Department, Regional Hospital of Monforte de Lemos, Monforte de Lemos, Lugo, Spain
- ³² P Pneumology Department, Doctor José Molina Orosa University Hospital, Arrecife, Lanzarote, Spain
- ³³ ⁹ Internal Medicine Department, Clinic Hospital, Barcelona, Spain
- ³⁴ ^r Internal Medicine Department, Vinalopó Hospital, Alicante, Spain
- ³⁵ ^s Internal Medicine Department, Sureste University Hospital, Arganda del Rey, Madrid, Spain
- ³⁶ ^t Internal Medicine Department, Sierrallana Hospital, Torrelavega, Cantabria, Spain

* Corresponding author.

37

https://doi.org/10.1016/j.rceng.2023.07.004

2254-8874/© 2023 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

Please cite this article as: A. López-Sampalo, H. Hernández-Negrín, M.-R. Bernal-López et al., The impact of frailty on intra-hospital survival in older patients with COVID-19 infection: the importance of early identification. SEMI-COVID National Registry, Revista Clínica Española, https://doi.org/10.1016/j.rceng.2023.07.004

E-mail address: rosa.bernal@ibima.eu (M.-R. Bernal-López).

¹ Dr. Ricardo Gómez-Huelgas and Dr. José-Manuel Ramos-Rincón have contributed equally to this work and share the last authorship.

Q2

ARTICLE IN PRESS

A. López-Sampalo, H. Hernández-Negrín, M.-R. Bernal-López et al.

^u Internal Medicine Department, Axarquía Hospital, Vélez-Málaga, Málaga, Spain

 $^{\rm v}$ Department of Clinical Medicine, Miguel Hernandez University of Elche, Alicante, Spain

Received 21 May 2023; accepted 24 May 2023

38 39	KEYWORDS	
40	Frailty;	Abstract:
40	Prognosis;	Background: Emerging evidence suggests that frailty may be a significant predictor of poor
42	Survival;	outcomes in older individuals hospitalized due to COVID-19. This study aims to determine the
42	COVID-19;	prognostic value of frailty on intrahospital patient survival.
43	Older people	Methods: This observational, multicenter, nationwide study included patients aged 70 years
45	older people	and older who were hospitalized due to COVID-19 in Spain between March 1 and December 31,
46		2020. Patient data were obtained from the SEMI-COVID-19 Registry of the Spanish Society of
40		Internal Medicine. Frailty was assessed using the Clinical Frailty Scale. The primary outcome was
48		hospital survival. Cox proportional hazards models were used to assess predictors of survival.
49		Results: A total of 1,878 participants (52% men and 48% women) were included, with 1,351
50		(71.9%) survivors and 527 (28.1%) non-survivors. The non-survivor group had higher mean age
51		(83.5 vs. 81 years), comorbidities (6.3 vs. 5.3 points on the Charlson index), degree of depen-
52		dency (26.8% vs. 12.4% severely dependent patients), and frailty (34.5% vs. 14.7% severely
53		frail patients) compared to survivors. However, there were no differences in terms of sex. Our
54		results demonstrate that a moderate-severe degree of frailty is the primary factor indepen-
55		dently associated with shorter survival [HR 2.344 (1.437-3.823; p<0.001) for CFS 5-6 and
56		3.694 (2.155–6.330; p<0.001) for CFS 7–9].
57		<i>Conclusion</i> : Frailty is the main predictor of adverse outcomes in older patients with COVID-19.
58		The utilization of tools such as the Clinical Frailty Scale is crucial for early detection in this
59		population.
60		© 2023 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights
61		reserved.

PALABRAS CLAVE Fragilidad; Pronóstico:

rionoscico,
Supervivencia;
COVID-19;
Pacientes mayores

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Impacto de la fragilidad en la supervivencia intrahospitalaria en pacientes mayores con infección por COVID-19: la importancia de su identificación temprana. Registro Nacional SEMI-COVID

Resumen

Introducción: La evidencia reciente sugiere que la fragilidad puede ser un importante predictor de resultados adversos en personas mayores hospitalizadas por COVID-19. El objetivo de este estudio es determinar el valor pronóstico de la fragilidad en la supervivencia intrahospitalaria de estos pacientes.

Métodos: Estudio observacional, multicéntrico y de ámbito nacional de pacientes \geq 70 años hospitalizados a consecuencia de la COVID-19 en España desde el 1 de marzo hasta el 31 de diciembre de 2020. Los datos de los pacientes se obtuvieron del Registro SEMI-COVID-19 de la Sociedad Española de Medicina Interna. Se utilizó la Escala de Fragilidad Clínica para evaluar la fragilidad. El resultado primario fue la supervivencia hospitalaria. Se realizó un modelo de riesgos proporcionales de Cox para evaluar los predictores de supervivencia.

Resultados: Se incluyeron 1.878 participantes (52% hombres y 48% mujeres). 1.351 (71,9%) supervivientes y 527 (28,1%) no supervivientes. El grupo de no supervivientes presentaba en comparación con los supervivientes una media de edad superior (83,5 frente a 81 años), más comorbilidades (6,3 frente a 5,3 puntos en el índice de Charlson), mayor grado de dependencia (26,8% frente a 12,4% de pacientes con dependencia severa) y de fragilidad (34,5% frente a 14,7% de pacientes con fragilidad severa), sin embargo, no hubo diferencias en cuanto al sexo. Nuestros resultados muestran que un grado de fragilidad moderado-grave es el principal factor asociado de forma independiente con una menor supervivencia [HR 2,344 (1,437–3,823; p < 0,001) para SFC 5–6 y 3,694 (2155–6,330; p < 0,001) para SFC 7–9.].

Revista Clínica Española xxx (xxxx) xxx-xxx

⁹¹Q⁵ Introduction

The COVID-19 pandemic has had an immense impact on 92 the elderly, who are among the most vulnerable and 93 affected groups. This population experiences a higher 94 proportion of severe cases and complications during infec-95 tion ¹ and exhibits intrinsic and extrinsic factors that 96 contribute to increased clinical fragility and susceptibil-97 ity to infectious processes, such as weakened immune 90 systems or immunosenescence,² heightened comorbidity.³ 99 malnutrition,⁴ and a higher rate of institutionalization. 100

Since the onset of the COVID-19 pandemic, advanced 101 age has been identified as one of the strongest risk factors 102 for poor outcomes, complications, and mortality.⁵⁻⁷ Age is 103 an easily measurable prognostic marker; however, its prog-104 nostic utility by itself is limited.⁸ In this regard, emerging 105 evidence suggests that frailty may be a significant predictor 106 of poor outcomes in older people hospitalized due to COVID-107 19.9,10 Frailty has also been used for clinical decision-making 108 during this pandemic,¹¹ but further clinical research is still 109 needed to determine the usefulness of frailty screening in 110 predicting adverse disease. 111

Frailty is defined as a medical syndrome with multi-112 ple causes and contributors characterized by diminished 113 strength, endurance, and reduced physiological function, 114 which increases an individual's vulnerability to developing 115 increased dependency and/or death:12 The likelihood of 116 frailty increases with age, estimated to affect around 40% 117 of older patients.¹³ Fried's frailty criteria are widely used 118 for diagnosing frailty.¹⁴ According to these criteria, a diag-119 nosis of frailty is established if the patient meets three of 120 the following criteria: unintentional weight loss, exhaustion, 121 muscle weakness, motor slowness, and low activity. Over the 122 years, multiple instruments have been developed to assess 123 frailty, including rapid detection scales that are more fea-124 sible in clinical practice and require only a few minutes of 125 application, such as the Clinical Frailty Scale (CFS)¹⁵ and the 126 FRAIL scale.¹⁶ 127

The relationship between the degree of pre-infection 128 clinical frailty and the progression of COVID-19 has been 129 the subject of several studies to date. However, most stud-130 ies assessing the prognostic capacity of clinical frailty have 131 either been conducted in the general population or, if they 132 do evaluate prognostic factors in older patients, have not 133 included the degree of frailty. These studies have exam-134 ined the relationship between frailty and mortality, hospital 135 136 infection rates, intensive care admission rates, and disease phenotypes.^{10,17,18} 137

Other factors, such as advanced age, male sex, severe 138 functional dependence, and comorbidities like hyperten-139 sion, diabetes mellitus, and obesity, as well as analytical parameters (C-reactive protein, lymphopenia, neutrophilia, etc.), clinical parameters at admission (hypoxia, high SOFA score, temperature, etc.), and the presence of radiological abnormalities, have also been identified as the main risk factors for poor outcomes in older people with COVID-19 infection. 19-21

Systematic frailty assessment in older patients with COVID-19 infection allows for the early identification of frail elderly patients. This enables better care for those at higher risk of severe disease and facilitates improved resource allocation. Therefore, the objectives of this study in older patients hospitalized due to COVID-19 infection are as follows: a) to determine the prognostic value of frailty on intrahospital patient survival compared to other previously identified predictors of poor prognosis, and b) to emphasize the importance of early detection of frailty in this population.

Materials and methods

Study design and recruited population

This was an observational, multicenter, nationwide study of patients aged >70 years old who were hospitalized due to COVID-19 in Spain from March 1 to December 31, 2020. Patient data was obtained from the Spanish Society of Internal Medicine's SEMI-COVID-19 Registry, which includes 150 Spanish hospitals. The registry encompasses all consecutive patients aged >18 years old admitted to hospitals with confirmed COVID-19 through microbiological testing using reverse transcription polymerase chain reaction (RT-PCR) on nasopharyngeal swab samples, sputum specimens, or bronchoalveolar lavage. For this study, we focused on the subpopulation of patients aged >70 years old.

Definition of variables

The SEMI-COVID-19 Registry retrospectively collects data from the initial admission of patients aged >18 years with confirmed COVID-19. The data include sociodemographic information, previous medical history, routine treatments, clinical presentation, clinical condition, laboratory test results, radiological findings, clinical management, in-hospital complications, length of hospital stay, early readmissions, referral to long-term care or skilled nursing facilities, and in-hospital deaths. More detailed information about the justification, objectives, methodology, and preliminary results of the SEMI-COVID-19 Registry has been published in this journal (Vol. 220. No. 8.).²² Clinicians collected the data retrospectively using an online electronic data capture system.

140

141

142

143

144

145

146

147

148

149

153 154 155

152

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

Q2

ARTICLE IN PRESS

A. López-Sampalo, H. Hernández-Negrín, M.-R. Bernal-López et al.

To assess preadmission functional status, we used the 184 Barthel Index. A score of 100–91 indicates independence or 185 slight dependency, 90–61 indicates moderate dependence, 186 and <60 indicates severe dependency.²³ The comorbid-187 ity burden was assessed using the age-adjusted Charlson 188 Comorbidity Index (CCI).²⁴ The diagnosis of dementia was 189 based on DSM-5 criteria.²⁵ Atherosclerotic cardiovascular 190 disease encompassed a history of ischemic cardiopathy 191 (myocardial infarction, acute coronary syndrome, angina, 192 or coronary revascularization), cerebrovascular disease 193 (stroke, transient ischemic attack), or peripheral arte-194 rial disease (intermittent claudication, revascularization, 195 lower limb amputation, or abdominal aortic aneurysm). 196 Nonatherosclerotic cardiovascular disease included atrial 197 fibrillation and heart failure. Obesity was defined as a body 198 mass index $>30 \text{ kg/m}^2$. Hypertension, diabetes mellitus, 199 and dyslipidemia were considered present if there was a 200 prior clinical diagnosis or if the patients had been receiv-201 ing pharmacological treatment for these conditions. Chronic 202 pulmonary disease was defined as a diagnosis of chronic 203 obstructive pulmonary disease and/or asthma. Malignancy 204 included solid tumors and/or hematologic neoplasia (exclud-205 ing nonmelanoma skin cancer). Moderate-to-severe renal 206 disease was defined as an estimated glomerular filtra-207 tion rate <45 mL/min/1.73 m² according to the CKD-EPI 208 equation.²⁶ 209

Preadmission comorbidity data were collected from each patient's electronic medical record at each hospital. Laboratory data (blood gases, metabolic panel, complete blood count, coagulation) and diagnostic imaging tests were collected at admission.

The variables for analysis were selected based on recent 215 studies on COVID-19 that identified them as indicators of 216 poor prognosis.¹⁹⁻²¹ These variables included age, male sex, 217 level of severe dependence (Barthel <60), clinical diagno-218 sis of coronary heart disease, diabetes, and hypertension; 219 smoking (previous or current), oxygen saturation <90%, 220 temperature \geq 37.8 °C at admission, and blood biomarkers 221 (lactate dehydrogenase (LDH) >500 U/L, C-reactive pro-222 tein (CRP) >80 mg/L, neutrophil count >7.5 \times 103/ μ L, and 223 lymphocyte count <0.800 \times 103/ μ L) as well as bilateral pul-224 monary infiltrates on chest X-ray. 225

Frailty was assessed using the Clinical Frailty Scale 226 (CFS).¹⁵ The assessment was based on the patient's condition 227 two weeks before hospital admission. The CFS is an ordi-228 nal hierarchical scale that ranks frailty from 1 to 9, with a 229 score of 1 indicating very fit, 2 indicating well, 3 indicating 230 managing well, 4 indicating vulnerable, 5 indicating mildly 231 frail, 6 indicating moderately frail, 7 indicating severely 232 frail, 8 indicating very severely frail, and 9 indicating termi-233 nally ill. Due to the inadequate number of events for each 234 score, the scores were grouped as follows for analysis: 1-2 235 (fit), 3-4 (becoming vulnerable, but not frail), 5-6 (initial 236 signs of frailty but with some degree of independence), and 237 7-9 (severe or very severe frailty). These groupings were 238 selected to align with the clinical descriptions outlined in 239 the CFS and were considered reasonable severity groupings 240 241 for frailty.

The primary outcome of the study was intrahospital survival, defined as the time from hospital admission due to
 COVID-19 to in-hospital mortality. For patients diagnosed
 with COVID-19 while already being hospitalized (hospital-

acquired or nosocomial infection), the date of diagnosis was used instead of the date of admission.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

Statistical analysis

Qualitative variables were presented as absolute and relative frequencies and compared using the chi-square test or Fisher's exact test, as appropriate. Quantitative variables were expressed as mean and standard deviation and compared using Student's t-test for independent groups.

To assess the prognostic value of frailty on patient survival, a multivariate Cox proportional hazards analysis was conducted. This analysis included variables that showed a significant association in the univariate analysis, as well as other variables of recognized prognostic value and potentially confounding factors reported in the literature, particularly those found in a previous article based on this COVID-19 patient registry.¹⁹ Kaplan–Meier curves were generated to visually represent patient survival according to frailty categories. A significance level of 0.05 (95% confidence level) was assumed. The data were stored and analyzed using the SPSS statistical package, version 25, for Windows.

Ethical aspects

Informed consent was obtained from all patients. In cases where biosafety concerns or patient discharge had occurred, verbal informed consent was requested and documented in the medical records. Data confidentiality and patient anonymity were strictly maintained in accordance with Spanish regulations governing observational studies. Patient identifiable information was removed before analyzing the database, ensuring that individual patients cannot be identified either in this article or in the database.

Results

In the SEMI-COVID-19 Registry, a total of 1,920 patients aged \geq 70 years who had been hospitalized due to COVID-19 infection between March 1 and December 31, 2020 were identified, and their degree of frailty was assessed. Forty-two participants were excluded due to incomplete registration of minimum clinical characteristics. Ultimately, the study included 1,878 participants of both sexes, with 52% men and 48% women. Among the included patients, 1,351 (71.9%) were discharged alive from the hospital, while 527 (28.1%) died during their hospital stay. There were no significant differences in the survival rates between males and females (Table 1).

The clinical and demographic characteristics of the population are shown in Table 1. The mean age of the population was 81.7 ± 6.9 years, being higher in the group of non-survivors (83.5 vs. 81 years, p < 0.001). The most prevalent comorbidities were hypertension (75.2%), dyslipidaemia (51.9%), diabetes (32%), atrial fibrillation (21%), and dementia (20.8%). The proportion of comorbidities such as dyslipidaemia, diabetes mellitus with target organ involvement, atrial fibrillation, dementia, degenerative neurological disease, and heart failure was significantly higher in the non-survivor group (p < 0.001). However,

Revista Clínica Española xxx (xxxx) xxx-xxx

Table 1	Clinical and demographical	characteristics in	patien ¹ / ₂ 70 year	rs hospitalised due to COVID-19	9.

Variables	All patients (n = 1878)	Dead (n = 527)	Alive (n = 1351)	р
Age, years (mean \pm standard deviation)	81.7±6.9	83.5 ± 7.0	81.0±6.8	<0.001
Sex (%)				0.012
Female	901 (48.0)	228 (43.3)	673 (49.8)	
Male	977 (52.0)	299 (56.7)	678 (50.2)	
BMI (mean \pm standard deviation)	$28,8 \pm 4.9$	$\textbf{29.0} \pm \textbf{5.4}$	$\textbf{28.7} \pm \textbf{4.7}$	0.570
Smoking status (%)	581 (31.3)	185 (35.7)	396 (29.6)	0.010
Comorbidities (%)				
Arterial hypertension	1412 (75.2)	412 (78.2)	1000 (74)	0.061
Dyslipidaemia	974 (51.9)	299 (56.7)	288 (43.3)	0.008
Diabetes without target organ damage	415 (22.1)	108 (20.5)	307 (22.7)	0.295
Diabetes with target organ damage	187 (10.0)	75 (14.2)	112 (8.3)	<0.001
Atrial fibrillation	395 (21.0)	145 (27.5)	250 (18.5)	<0.001
Dementia	390 (20.8)	165 (31,3)	225 (16.7)	<0.001
Degenerative neurological disease	322 (17.2)	127 (24.2)	195 (14.4)	<0.001
Heart failure	221 (11.8)	100 (19.0)	121 (9.0)	<0.001
COPD	195 (10.4)	65 (12.4)	130 (9.6)	0.082
Moderate-severe Chronic renal failure	184 (9.8)	86 (16.3)	98 (7.3)	<0.001
Acute myocardial infarction	173 (9.2)	78 (14.8)	95 (7.0)	<0.001
Peripheral vascular disease	114 (6.1)	41 (7.8)	73 (5.4)	0.054
Asma	113 (6.0)	29 (5.5)	84 (6.2)	0.558
Obstructive sleep apnea syndrome	104 (5.6)	32 (6.1)	72 (5.4)	0.529
Cerebrovascular disease	90 (4.8)	40 (7.6)	50 (3.7)	<0.001
Neoplasia with metastasis	38 (2.0)	16 (3.0)	22 (1.6)	0.052
Charlson Index (mean \pm standard deviation)	5.6±2.0	6.3 ± 2.2	5.2 ± 1.9	<0.001
Level of dependency (%)				<0.001
Mild	1171 (62.5)	231 (43.9)	940 (69.7)	
Moderate	395 (21.1)	154 (21.1)	241 (17.9)	
Severe	114 (16.4)	141 (26.8)	167 (12.4)	
CFS (%)				<0.001
1–2: very fit/fit	174 (9.3)	20 (3.8)	154 (11.4)	
3—4: managing well/vulnerable	795 (42.3)	145 (27.5)	650 (48.1)	
5-6: mildly frail/moderately frail	529 (28.2)	180 (34.2)	349 (25.8)	
7–9: severely frail/very severely frail/terminally ill	380 (20.2)	182 (34.5)	198 (14.7)	

BMI, body mass Index; COPD, chronic obstructive pulmonary disease; CFS, clinical frailty scale.

Variables are expressed as mean $\pm\,{\rm standard}$ deviation (SD) and the p value.

although the proportion of cases with hypertension and 301 COPD was also higher in the non-survivor group, no signifi-302 cant differences were found compared to survivors. Charlson 303 index was high in all population, but more in the non-survivor 304 group (6.3 vs. 5.3 points, p < 0.001). Most patients (62,5%) 305 were independent or with a middle level of dependence; 306 nonetheless, the proportion of patients with a moderate or 307 severe level of dependence was higher among non-survivors 308 (34.2% vs 25.8% patients with moderate frailty, and 34.5% vs. 309 14.7% patients with severe frailty, respectively, p < 0.001). 310

Regarding the degree of frailty, 174 patients (9.3%) were classified as very fit/fit (CFS 1–2); 795 patients (42.3%) as vulnerable (CFS 3–4); 529 patients (28.9%) were classified as moderately fragile (CFS 5–6) and 380 patients (20.2%) as severely fragile or terminal (CFS 7–9). The proportion of patients with moderate or severe frailty is significantly higher in non-survivors (p<0.001)

A higher proportion of patients in the non-survivor group had significantly higher levels of leukocytes, neutrophils, CRP, creatin, LDH, ferritin, and procalcitonin (Table 2) than survivors (p<0.001). Non-survivors also had higher lymphopenia and higher D-Dimer values, although this did not reach significance. Hypoxemia (Oxygen saturation <90%) was more frequent in non-survivor group (p < 0.001). Radiological findings (condensations, bilateral infiltrates and pleural effusion) were significantly more frequent in the non-survivor group (p < 0.001).

Frailty was associated with higher all-cause mortality after adjustment for age, sex, and comorbidities, showing worsening of clinical outcome with increased frailty (Table 3 and Fig. 1). The crude HR for time from hospital admission to mortality was 1.634 (95% Cl 1.023–2.611; p 0.04) for CFS 3–4; 2,887 (1,816–4,591; p < 0.001) for CFS 5–6 and 5,557 (3,493–8,841; p < 0.001) for CFS 7–9, all compared to CFS 1–2. The adjusted HR was 1.458 (95% Cl 0.903–2.355; p 0.001) for CFS 3–4; 2,344 (1,437–3,823; p < 0.001) for CFS 5–6 and 3,694 (2,155–6,330; p < 0.001) for CFS 7–9. Elevated CRP, lymphopenia, neutrophilia, hypoxemia, and bilateral chest X-ray infiltrates were also significantly associated with mortality (p < 0.001). Severe dependence was also significantly associated with mortality in the univariate analysis with a crude HR of 2.409 (1.984–2.926; p < 0.001);

322

Q2

A. López-Sampalo, H. Hernández-Negrín, M.-R. Bernal-López et al.

Table 2	Laboratory.	physical examination.	and radiological	findings in a	patients >70 v	vears hosi	pitalised because of COVID-19.

Variables	All patients (n = 1878)	Dead (n = 527)	Alive (n = 1351)	р
Temperature, ${}^{0}C$ (mean \pm standard deviation)	36.7 ± 0.8	36.7±0.83	36,6±0.88	0.092
Oxygen saturation <90% (mean \pm standard deviation)	$\textbf{92.9} \pm \textbf{5.4}$	91.4±6.8	93.5 ± 4.7	<0.001
Ches x-ray findings (%)				
Pneumonic condensation				<0.001
Unilateral	172 (10.6)	51 (12.2)	121 (10.1)	
Bilateral	312 (19.3)	134 (32.1)	178 (14.8)	
Interstitial lung infiltrates				<0.001
Unilateral	126 (7.8)	23 (5.5)	103 (8.6)	
Bilateral	969 (59.9)	299 (71.7)	670 (55.8)	
Pleural effusion				<0.001
Unilateral	56 (3.5)	27 (6.5)	29 (2.4)	
Bilateral	32 (2.0)	16 (3.8)	16 (1.3)	
Analytics (mean \pm standard deviation)				
Haemoglobin, g/dL	12.7 ± 2.0	12.4 ± 2.2	12.8 ± 2.0	<0.001
Leukocytes, 10 ³ /μL	7665.3 ± 4929.8	8871 ± 6708	$\textbf{7196} \pm \textbf{3938}$	<0.001
Neutrophils, 10 ³ /μL	5901.8 ± 4333.5	$\textbf{7038} \pm \textbf{3888.4}$	5460 ± 5144.0	<0.001
Lymphocytes, 10 ³ /µL	1169.9 ± 2657.6	1094.3 ± 2729.9	1099.1 ± 2629.5	0.444
Platelets, 10 ³ /µL	200 ± 90	197 ± 91	202 ± 89	0.244
C-reactive protein, mg/L	90.1 ± 85.6	115.7 ± 101.2	$\textbf{80.9} \pm \textbf{76.6}$	<0.001
Creatinine, mg/dL	1.3 ± 1.0	$\textbf{1.6} \pm \textbf{1.2}$	1.2 ± 0.9	<0.001
LDH, U/L	357.5 ± 230.2	$\textbf{407.4} \pm \textbf{302.7}$	$\textbf{338.7} \pm \textbf{193.0}$	<0.001
Ferritin, μg/L	748.2 ± 890.5	$\textbf{996.7} \pm \textbf{1197.8}$	663.5 ± 739.8	<0.001
Albumin, g/dL	3.4 ± 3.5	3.2 ± 0.5	$3.5\pm$ -0.5	<0.001
Procalcitonin, ng/mL	0.54 ± 2.77	$\textbf{0.93} \pm \textbf{3.6}$	0.39 ± 2.3	0.014
D-dimer, ng/mL	${\bf 2376.9 \pm 14956.5}$	3749.9 ± 27261.2	1869.4 ± 5584.4	0.145

LDH, lactate deshydrogenase.

Variables are expressed as mean \pm standard deviation (SD) and p value.

Table 3	Prognostic factors	for in-hospital surviva	al. Univariate and multivariate analysis.	

Variables	Univariate			Multivariate		
	HR	95%CI	р	HR	95%CI	р
CFS 1–2	Referen	се				
CFS 3-4	1.634	1.023-2.611	0.040	1.458	0.903-2.355	0.123
CFS 5–6	2.887	1.816-4.591	<0.001	2.344	1.437-3.823	<0.001
CFS 7–9	5.557	3.493-8.841	<0.001	3.694	2.155-6.330	<0.001
C-reactive protein \geq 80 mg/l	2.196	1.844-2.613	<0.001	1.835	1.530-2.201	<0.001
Lymphocytes < $0.800 \times 10^3 / \mu L$	1.829	1.537-2.175	<0.001	1.706	1.418-2.051	<0.001
Neutrophils $\geq 7.5 \times 10^3 / \mu L$	1.676	1.412.990	<0.001	1.503	1.256-1.799	<0.001
SatO ₂ <90%	1.665	1.371-2.020	<0.001	1.492	1.218-1.827	<0.001
Bilateral interstitial lung infiltrates on x-ray	1.559	1.255-1.936	<0.001	1.375	1.092-1.732	0.007
Severe dependency	2.409	1.984-2.926	<0.001	1.184	0.879-1.595	0.266
Charlson index	1.154	1.115-1.194	<0.001	1.067	1.023-1.113	0.003
Age, years	1.057	1.044-1.070	<0.001	1.032	1.018-1.047	0.000
Female Sex	1.119	0.857-1.212	0.828	0.989	0.821-1.191	0.906

however, in the multivariate analysis this association was
 not significant adjusted HR 1.184 (0.879–1.595; p 0.266).

345 Discussion

Our study determines the importance of early detection of frailty in older patients hospitalised due to COVID-19, considering it as main risk factor associated with adverse outcomes compared to other risk factors already identified in previous studies. The main predictors of poor prognosis during the acute phase of infection have been described in previous studies. However, most of them have been performed in the general population and only some have targeted the older patient population or have evaluated the degree of frailty.¹⁷

Revista Clínica Española xxx (xxxx) xxx-xxx

Figure 1 Overall survival by CFS category.

Older age is associated with increased mortality but is 356 not sufficient on its own for risk stratification in patients 357 with COVID-19 and is subject to ethical controversy.¹¹ 358 Pre-admission functional status plays an important role 359 in the evolution of this patient profile, especially those 360 with a moderate-severe degree of frailty who are at 361 higher risk of adverse outcomes. This relationship between 362 frailty and increased mortality has been extensively stud-363 ied in other diseases. In COVID-19 an increasing number 364 of studies have identified frailty as one of the main prog-365 nostic factors of the disease, but more evidence is still 366 needed. 367

Previously, the SEMI-COVID registry¹⁹ had identified the 368 main predictors of poor prognosis in very older patients 369 (>80 years) hospitalised due to COVID-19 infection and 370 this study was the first one to identify the prognostic 371 significance of pre-admission clinical status on the out-372 come of geriatric patients, finding that a severe degree of 373 dependency (defined as a Barthel Index <60) was an inde-374 pendent predictor of mortality. Nonetheless, one of the 375 main limitations of this study was that it did not eval-376 uate frailty. Advanced age, severe level of dependency, 377 male sex, certain laboratory, and chest X-ray abnormali-378 ties were identified as the main predictors of poor clinical 379 outcome in this population. In contrast, comorbidities were 380 not associated with increased mortality. Our data reflect 381 concordance with the results of this study except for 382 some aspects. No association was found between intra-383 hospital survival and sex or level of severe dependency. 384 However, a high degree of comorbidity (defined by Charl-385 son index \geq 4) was associated with lower intrahospital 386 survival. 387

Studies assessing frailty in COVID-19 such as the COPE 388 study,¹⁷ and others²⁷ demonstrated that frailty was asso-389 ciated with mortality and longer hospital stay, showing a 390 worsening of clinical outcome with increasing frailty. Our 391 results do not only confirm these assertions, but also estab-392 lish the presence of moderate-severe frailty as the main 393 394 prognostic factor independently associated with all-cause hospital survival compared to the other factors identified in 395 previous studies. In addition, there is a direct relationship 396 between a higher degree of frailty and lower intrahospital 397 survival. 398

The assessment of the degree of frailty was carried out using the quantitative method CFS, which is the most widely used in other studies.^{28,29} The CFS is a reliable and potentially useful screening tool to identify frailty. It is also easily applicable even in a situation of limited human resources and increasing demand for medical services,³⁰ as it was the case in the COVID-19 pandemic. Other frailty measures are available for the assessment of frailty in hospitalised patients but are either more time consuming to apply or rely on routinely collected data to score frailty.³¹ The National Institute for Health and Care Excellence (NICE) published in 2020 the COVID-19 rapid guidelines for adult critical care, recommending the use of the CFS in patients aged 65 and over to aid clinical decision making and avoid age discrimination.³²

400

401

402

403

404

405

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

Therefore, the early assessment of frailty represents a valuable opportunity to provide higher quality care to older adults with COVID-19. Early detection and careful monitoring of frailty can alert us to the possibility of adverse outcomes and help us to provide appropriate clinical management in this patient profile. The initial approach to these patients should incorporate an appropriate functional assessment including the evaluation of the degree of frailty. In addition, we would like to emphasise the importance of the use of the CFS scale as a predictor of unfavourable events in this population.

This study has some limitations. First, this is a retrospective series focusing on hospitalised patients. Since these patients had more severe disease and a higher mortality rate, our data may overestimate the overall mortality in the totality of adults over 70 years of age with COVID-19. Second, as a retrospective cohort study, the data were collected by a large number of investigators, which could have led to heterogeneity in data entry and validation.

Conclusion

In older patients hospitalised due to COVID-19 infection, the degree of frailty is the main predictor of intrahospital survival, showing that it increases the risk of all-cause mortality after adjustment for age, comorbidities, and other prognostic factors related to the severity of the infection. These findings highlight the need for early detection of frailty using clinical scales, which is of vital importance in establishing a prognosis in this population.

Funding

The authors declare that they have not received funding for conducting this study.

Conflicts of interest

The authors declare that they do not have any conflicts of interest. Q6

Acknowledgments

We would like to thank Ms. Claudia Corazza González for her help with the final English-language version. 450

Q2

451 **References**

- Niu S, Tian S, Lou J, Kang X, Zhang L, Lian H, et al. Clinical characteristics of older patients infected with COVID-19: a descriptive study. Arch Gerontol Geriatr. 2020;89:104058, doi:10.1016/j.archger.2020.104058. Epub 2020 Apr 10. PMID: 32339960; PMCID: PMC7194515.
- Liang SY. Sepsis and other infectious disease emergencies in the elderly. Emerg Med Clin North Am. 2016;34(3):501-22, doi:10.1016/j.emc.2016.04.005. PMID: 27475012; PMCID: PMC502236.
- 461 3. Esper AM, Moss M, Lewis CA, Nisbet R, Mannino DM, Martin GS.
 462 The role of infection and comorbidity: factors that influence
 463 disparities in sepsis. Crit Care Med. 2006;34:2576–82.
- 4. Lutz M, Arancibia M, Papuzinski C, Stojanova J. Inmunosenescencia, infecciones virales y nutrición: revisión narrativa de la evidencia científica disponible [Immunosenescence, viral infections and nutrition: A narrative review of scientific available evidence]. Rev Esp Geriatr Gerontol. 2022;57(1):33–8, doi:10.1016/j.regg.2021.08.003. Epub 2021 Nov 26. PMID: 34844781.
- 5. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62, doi:10.1016/S0140-6736(20)30566-3. Epub 2020 Mar 11. Erratum in: Lancet. 2020 Mar 28;395(10229):1038. PMID: 32171076.
- 478
 6. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al., the Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19
 481 in the New York City Area. JAMA. 2020;323(20):2052–9, doi:10.1001/jama.2020.6775. Erratum in: JAMA. 2020 May 26;323(20):2098. PMID: 32320003.
- 7. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al., ISARIC4C investigators. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985, doi:10.1136/bmj.m1985. PMID: 32444460.
- 8. Hewitt J, Carter B, McCarthy K, Pearce L, Law J, Wilson
 FV, et al. Frailty predicts mortality in all emergency surgi cal admissions regardless of age. An observational study. Age
 Ageing. 2019;48(3):388–94, doi:10.1093/ageing/afy217. PMID:
 30778528.
- 496
 497
 497
 497
 497
 498
 498
 498
 499
 499
 499
 499
 490
 490
 491
 491
 491
 492
 492
 493
 494
 495
 495
 496
 496
 497
 498
 499
 498
 499
 498
 499
 498
 499
 498
 499
 498
 499
 499
 499
 490
 490
 491
 491
 491
 492
 493
 494
 494
 495
 496
 497
 498
 498
 498
 499
 498
 498
 498
 499
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
- 10. Cosco TD, Best J, Davis D, Bryden D, Arkill S, van Oppen
 J, et al. What is the relationship between validated frailty
 scores and mortality for adults with COVID-19 in acute hospi tal care? A systematic review. Age Ageing. 2021;50(3):608–16,
 doi:10.1093/ageing/afab008. PMID: 33951151.
- 11. Lewis EG, Breckons M, Lee RP, Dotchin C, Walker R.
 Rationing care by frailty during the COVID-19 pandemic. Age
 Ageing. 2021;50(1):7–10, doi:10.1093/ageing/afaa171. PMID:
 32725156.
- 12. Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14(6):392-7, doi:10.1016/j.jamda.2013.03.022.
 PMID: 23764209.
- Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair
 FS. Frailty and pre-frailty in middle-aged and older
 adults and its association with multimorbidity and mor-

tality: a prospective analysis of 493737 UK Biobank participants. Lancet Public Health. 2018;3(7):e323-32, doi:10.1016/S2468-2667(18)30091-4. Epub 2018 Jun 14. PMID: 29908859.

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

- 14. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol a Biol Sci Med Sci. 2001;56(3):M146–56, doi:10.1093/gerona/56.3.m146. PMID: 11253156.
- Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173(5):489–95, doi:10.1503/cmaj.050051. PMID: 16129869.
- Abellan van Kan G, Rolland Y, Bergman H, Morley JE, Kritchevsky SB, Vellas B. The I.A.N.A Task Force on frailty assessment of older people in clinical practice. J Nutr Health Aging. 2008;12(1):29–37, doi:10.1007/BF02982161. PMID: 18165842.
- Hewitt J, Carter B, Vilches-Moraga A, Quinn TJ, Braude P, Verduri A, et al. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study. Lancet Public Health. 2020;5(8):e444–51, doi:10.1016/S2468-2667(20)30146-8. Epub 2020 Jun 30. PMID: 32619408.
- Dumitrascu F, Branje KE, Hladkowicz ES, Lalu M, McIsaac DI. Association of frailty with outcomes in individuals with COVID-19: a living review and meta-analysis. J Am Geriatr Soc. 2021;69(9):2419–29, doi:10.1111/jgs.17299. Epub 2021 Jun 5. PMID: 34048599.
- Ramos-Rincón JM, Buonaiuto V, Ricci M, Martín-Carmona J, Paredes-Ruíz D, Calderón-Moreno M, et al., SEMI-COVID-19 Network. Clinical characteristics and risk factors for mortality in very old patients hospitalized with COVID-19 in Spain. J Gerontol Biol Sci Med Sci. 2021;76(3):e28-37, doi:10.1093/gerona/glaa243. PMID: 33103720.
- 20. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506, doi:10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. Erratum in: Lancet. 2020 Jan 30;: PMID: 31986264.
- Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20, doi:10.1056/NEJMoa2002032. Epub 2020 Feb 28. PMID: 32109013.
- 22. Casas-Rojo JM, Antón-Santos JM, Millán-Núñez-Cortés J, Lumbreras-Bermejo C, Ramos-Rincón JM, Roy-Vallejo E, et al. Clinical characteristics of patients hospitalized with COVID-19 in Spain: results from the SEMI-COVID-19 Registry. Rev. Clin. Esp. 2020;220:480–94, doi:10.1016/j.rce.2020.07.003.
- 23. Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index. Md State Med J. 1965;14:61–5. PMID: 14258950.
- 24. Rius C, Pérez G, Martínez JM, Bares M, Schiaffino A, Gispert R, et al. An adaptation of Charlson comorbidity index predicted subsequent mortality in a health survey. J Clin Epidemiol. 2004;57(4):403–8, doi:10.1016/j.jclinepi.2003.09.016. Erratum in: J Clin Epidemiol. 2007 Jun;60(6):643. PMID: 15135843.
- 25. American Psychiatric Association. Neurocognitive Disorders. In: Diagnostic and Statistical Manual of Mental Disorders. fifth edition American Psychiatric Association; 2013.
- Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al., CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12, doi:10.7326/0003-4819-150-9-200905050-00006. Erratum in: Ann Intern Med. 2011 Sep 20;155(6):408. PMID: 19414839.
- 27. Pranata R, Henrina J, Lim MA, Lawrensia S, Yonas E, Vania R, et al. Clinical frailty scale and mortality in COVID-19: a systematic review and dose-response meta-analysis. Arch Gerontol

584

Revista Clínica Española xxx (xxxx) xxx-xxx

- Geriatr. 2021;93:104324, doi:10.1016/j.archger.2020.104324. Epub 2020 Dec 15. PMID: 33352430. 585
- 28. Brill SE, Jarvis H, Ozcan E, Burns T, Warraich R, Amani L, 586 et al. COVID-19: a retrospective cohort study with focus on 587 the over-80s and hospital-onset disease. medRxiv. 2020;18:194, 588 doi:10.1186/s12916-020-01665-z. 589
- 29. Miles A, Webb TE, McLoughlin B, Mannan I, Rather A, Knopp 590 P, et al. Outcomes from COVID-19 across the range of 591 frailty: excess mortality in fitter older people. medRxiv. 2020, 592 doi:10.1101/2020.05.22.20110486. 593
- 30. Proietti M, Cesari M. Frailty: what is it? Adv Exp Med 594 Biol. 2020;1216:1-7, doi:10.1007/978-3-030-33330-0_1. PMID: 595 31894541.
- 31. Gilbert T, Neuburger J, Kraindler J, Keeble E, Smith P, Ariti C, et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. Lancet. 2018;391(10132):1775-82, doi:10.1016/S0140-6736(18)30668-8. Epub 2018 Apr 26. PMID: 29706364; PMCID: PMC5946808.
- 32. Covid19 Rapid Guideline: Critical Care in Adults. [(accessed on 18 June 2020)]; Available online: http://www.covid19-rapid -guideline-critical-care-in-adults-pdf-66141848681413.pdf Recommendations for the admission of patients with COVID-19 to intensive care and intermediate care units (ICUs and IMCUs) Swiss Med. Wkly. 2020;150:w20227.

608