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Highlights
e History of SARS-CoV-2 infection affects longitudinal
responses to BNT162b2 vaccine

e Lower humoral but enhanced cellular responses early after
vaccine in naive subjects

e Comparable humoral and cellular responses almost 8 months
after vaccination

e Similar S-specific B cells late after vaccine in those naive and
recovered from COVID-19
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In brief

Lozano-Rodriguez et al. show that naive
subjects have enhanced SARS-CoV-2
spike-specific T reactions but reduced
humoral-specific responses compared
with individuals recovered from COVID-
19. However, almost 8 months after
vaccination, comparable specific
responses are observed with equivalent
levels of SARS-CoV-2-specific B cells
and neutralizing antibodies.
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SUMMARY

We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered
from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vacci-
nation. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from
COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels
all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show compara-
ble neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses,
naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4* T cell activation, and prolifer-
ation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and
cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific
responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differ-
entially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection and its associated pathology, coronavirus disease 2019
(COVID-19), have had an enormous impact on healthcare sys-
tems worldwide and still constitute a challenge. Several vaccines
have been authorized for emergency use by both the US Food
and Drug Administration (FDA) and the European Medicines
Agency (EMA). Among them, the BNT162b2 messenger RNA
(mRNA) vaccine has been widely used following an accelerated
two-dose vaccination schedule, which has exhibited specific hu-

moral and cellular responses in 95% of individuals (Polack et al.,
2020).

A number of studies have suggested a strong spike-specific
antibodies generation by individuals recovered from COVID-19
after a first vaccine shot and that the second dose appears to
be redundant (Ebinger et al., 2021; Gobbi et al., 2021; Levi et
al., 2021; Prendecki et al., 2021a). In contrast, a second dose
seems to be needed for a strong immunization in naive subjects
(Ebinger etal., 2021; Leviet al., 2021; Mulligan et al., 2020; Walsh
et al., 2020). Besides, the effect of this mMRNA vaccine on spike-
specific T cell responses has gained much attention (Ni et al.,
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2020; Prendecki et al., 2021b; Sasikala et al., 2021). In this re-
gard, to understand the cellular responses generated after vacci-
nation, considering previous SARS-CoV-2 exposure is crucial for
future adjustments in vaccination regimes.

Some reports are warning about the waning of the BNT162b2-
vaccine-induced protection a few months after vaccination
despite still showing a robust efficacy against suffering from
COVID-19 (Chemaitelly et al., 2021; Goldberg et al., 2021). This
wane has been linked to a decay in the levels of SARS-CoV-2-
specific neutralizing antibodies (Bayart et al., 2021; Doria-Rose
et al., 2021), although neither the role of SARS-CoV-2 spike-spe-
cific T (Guerrera et al., 2021) and B (Turner et al., 2021) cells is
fully understood nor the relationship between both humoral
and cellular responses triggered by COVID-19 vaccines against
(re)infection.

Herein, we aimed to evaluate the immune responses triggered
by immunization with the BNT162b2 vaccine in a cohort of naive
subjects and individuals recovered from COVID-19. Both humor-
al and cellular responses were thoroughly analyzed using blood
samples taken before vaccination, after the first dose, 14 days,
and almost 8 months after the vaccination regime was
completed. Our data indicated that previous SARS-CoV-2 expo-
sure conditioned early responses post-vaccination, as naive
subjects showed enhanced SARS-CoV-2 spike-specific CD4*
T cells but reduced humoral spike-specific responses compared
with individuals recovered from COVID-19. However, almost
8 months after vaccination, comparable humoral and cellular
responses were observed in both groups, importantly, with
equivalent levels of SARS-CoV-2-specific memory B cells and
neutralizing antibodies. Therefore, our findings suggest that pre-
vious exposure to the virus determines early functional T and B
cell-mediated responses to BNT162b2 vaccination. However,
both naive subjects and individuals recovered from COVID-19
show comparable memory SARS-CoV-2-specific immunity
almost 8 months after vaccination.

RESULTS

Humoral responses triggered after vaccination show
specific kinetics in naive subjects and individuals
recovered from COVID-19
Following the BNT162b2 vaccination strategy recommended by
both the FDA and the EMA, a total of 27 individuals were vacci-
nated with a two-dose regime administrated 21 days apart. Of
them, 16 had not been previously exposed to SARS-CoV-2 co-
ronavirus (naive), while 11 were reported as having recovered
from COVID-19 (Table S1). For all participants, four blood sam-
ples were taken: 5 days before the first dose (sample 0),
14 days after the first dose (sample 1), 14 days after the second
dose (sample 2), and a final long-term sample collected 230 days
(almost 8 months) after the second dose (sample 3) (Figure 1A).
We first analyzed the levels of SARS-CoV-2-specific plasma
immunoglobulins. One vaccination dose induced the presence
of both anti-spike S1 immonoglobulin A (IgA) and anti-receptor
binding domain (RBD) IgAs, whose levels were further boosted
by the second immunization dose in naive individuals (Figure 1B).
Although subjects recovered from COVID-19 showed higher
levels of IgA than naive participants after the first dose, the con-
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centrations after the second vaccination shot were comparable
between both groups and, again, slightly higher in subjects
recovered from COVID-19 after almost 8 months post-vaccina-
tion (sample 3) (Figure 1B). The analysis of IgGs (anti-spike S1,
anti-RBD, and anti-full spike) in sample 0 confirmed that the sub-
jects recovered from COVID-19 had been previously exposed to
SARS-CoV-2, and these participants showed higher levels of
specific IgGs than naive individuals throughout the observation
period (Figure 1C). It is noteworthy that the titers of all the
analyzed antibodies dropped in sample 3, but individuals recov-
ered from COVID-19 maintained slightly higher levels (Figures 1B
and 1C).

Beyond the Ig concentrations, we evaluated the neutralization
capacity of plasma against the spike antigen. The neutralization
capacity was measured using a competitive immunoassay. In
naive individuals, two doses were required to induce neutralizing
antibodies, whereas in recovered individuals, one dose induced
high neutralization titers. Of note, after a second dose, subjects
recovered from COVID-19 further increased their neutralization
activity, which was higher than in naive individuals 14 days after
full vaccination (Figure 1D). Note that, although the neutralization
capacity was still measurable, the neutralizing antibodies drop-
ped dramatically in sample 3. Importantly, this neutralization
ability was similar between naive subjects and individuals recov-
ered from COVID-19 at this long-term post-vaccination time
(Figure 1D). To further characterize the differential neutralization
capacity conditioned by previous exposure to SARS-CoV-2, a
functional assay based on the neutralization of a pseudovirus ex-
pressing the spike protein of SARS-CoV-2 was done. We
accomplished this analysis in sample 2, the first one where
both naive subjects and individuals recovered from COVID-19
showed neutralizing activity. This analysis confirmed that individ-
uals recovered from COVID-19 exhibited a better neutralizing ca-
pacity (Figure S1A). Altogether, these data indicated a differential
expression pattern of humoral responses between naive individ-
uals and subjects recovered from COVID-19 over time post-
vaccination (Figure 1E).

Next, we focused on circulating B cell-derived populations
because of their role in humoral responses. Based on a fluores-
cence-activated cell sorting (FACS) panel of 39 extracellular
markers and an unsupervised uniform manifold approximation
and projection (UMAP) dimensional reduction followed by
manual gating, we identified canonical cell subsets in peripheral
blood mononuclear cells (PBMCs) (Figure 1F). Again, we per-
formed this analysis in sample 2, where naive subjects and indi-
viduals recovered from COVID-19 showed neutralizing activity
(Figure 1D). An overall analysis of B cells differentiated up to 6
different subpopulations in naive subjects and patients recov-
ered from COVID-19 (Figure 1G). The UMAP analysis of human
leukocyte antigen (HLA)-DR, IgD, IgM, and IgG expressions
suggested no major changes between these two groups (Fig-
ure 1H), which was confirmed by quantitative assessments (Fig-
ure S1B-S1H). The same multiparametric approach was
applied to study circulating T cells, showing that the popula-
tions’ distribution and activation markers’ expression were
comparable between naive subjects and individuals recovered
from COVID-19 except for a slight increase in CD4* T regulatory
cells (Figure S2).
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Figure 1. SARS-CoV-2 spike-specific humoral response following BNT162b2 mRNA vaccination in naive subjects and individuals recovered
from COVID-19

(A) Experimental design. Blood samples were collected 5 days before BNT162b2 mRNA vaccination (sample 0), 14 days after the first dose (sample 1), and
14 days (sample 2) and 230 days (sample 3) after the second dose.

(B) Concentrations of plasma anti-spike S1 IgA (left panel) and anti-receptor binding domain (RBD) IgA (right panel) antibodies.

(C) Concentrations of plasma anti-spike S1 IgG (left panel), anti-RBD IgG (central panel), and anti-full spike IgG (right panel) antibodies.

(D) Concentration of neutralizing antibodies in plasma by means of a competitive assay; 10%/free anti-spike signal is depicted.

(E) Heatmap of Z score of IgA, 1gG, and anti-spike neutralizing antibodies.

(F) Uniform manifold approximation and projection (UMAP) of peripheral blood mononuclear cells (PBMCs) followed by manual gating to identify the indicated
populations.

(G) UMAP of B cells followed by manual gating to identify the indicated populations in sample 2.

H) UMAP clustering expressions of HLA-DR, IgD, IgM, and IgG on B cells.

1) Frequency of SARS-CoV-2 spike-specific B cells in gated CD19* cells in sample 3.

B, C, D, and ) Data shown as mean + SEM (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ***p < 0.0001). Unpaired Student’s t test in samples 0, 1, 2, or 3.
B, C, and D) Two-way ANOVA analyzing the time course (denoted by vertical bar, |). n = 16 naive, n = 11 recovered from COVID-19.

See also Figures S1, S2, and S3A.
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Considering the lack of differences in the levels of neutralizing
antibodies between naive subjects and individuals recovered
from COVID-19 almost 8 months after complete vaccination
(sample 3; Figure 1D), we decided to analyze the levels of
SARS-CoV-2 spike-specific B cells in this long-term time point
(Figure S3A). Remarkably, all of the participants showed
SARS-CoV-2 spike-specific B cells, with comparable levels be-
tween groups (Figure 11).

Naive individuals show enhanced SARS-CoV-2-specific
T cell lymphoproliferative responses early after
vaccination but are similar to those recovered from
COVID-19 at later time points

To explore whether previous exposure to SARS-CoV-2 could
modulate specific cellular responses against this coronavirus in
fully vaccinated individuals, PBMCs from both naive and recov-
ered subjects were ex vivo-exposed to a peptide pool covering
the SARS-CoV-2 spike protein, henceforth called the S-peptide
(Figure 2A). First, we analyzed the presence of several chemo-
kines and cytokines in culture supernatants after this ex vivo
stimulation for 5 days. The production of both CCL-2 and
CXCL10 was induced by the SARS-CoV-2 spike peptide pool
except for CCL-2 inindividuals recovered from COVID-19 almost
8 months post-vaccination (Figure 2B). However, only naive indi-
viduals showed a robust induction of most of the cytokines
analyzed (interleukin [IL]-2, IL-4, IL-6, IL-10, and tumor necrosis
factor alpha [TNFa]), although this S-peptide-specific response
in naive subjects was exclusive to sample 2 (Figure 2C). Interest-
ingly, interferon (IFN)-y expression showed a specific pattern,
mirroring CCL2 production (Figures 2B and 2C).

To further examine this differential outcome, cytokine produc-
tion was analyzed by intracellular FACS staining. The expression
of IL-2, TNFa, IFN-v, and granzyme B were consistently induced
in CD4* T cells after ex vivo stimulation with the S-peptide pool in
both naive subjects and individuals recovered from COVID-19
early after vaccination (sample 2) (Figures 2D and S4), with less
robust responses in CD8"* T cells. However, more than 7 months
after vaccination (sample 3), this SARS-CoV-2-specific response
was negligible in both groups (Figures 2D and S4).

Interestingly, the analysis of the intracellular cytokine produc-
tion increment induced by SARS-CoV-2 spike antigen ex vivo
stimulation showed a much more intense induction of IL-2 in
both CD4* and CD8* T cells from naive subjects than from in-
dividuals recovered from COVID-19 early after vaccination
(sample 2) (Figure 2E). Considering the crucial role of IL-2 in
the lymphoproliferative capacity of CD4* T cells, we decided
to analyze this function. Proliferation ability was explored based
on carboxyfluorescein succinimidyl ester (CFSE) dilution of total
PBMCs after ex vivo stimulation with the S-peptide pool. Both
CD4" and CD8" T cells proliferated in response to the spike an-
tigen in naive subjects and individuals recovered from COVID-
19, although with an apparent stronger effect on CD4* T cells
from naive subjects (Figure 2F). The increment of proliferation
between SARS-CoV-2 spike-antigen-stimulated and non-stim-
ulated PBMCs confirmed a more powerful CD4* lymphoproli-
ferative activity in naive subjects than in individuals recovered
from COVID-19, specifically, early after vaccination (sample 2)
(Figure 2G).
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These data suggest a strong SARS-CoV-2 spike-specific
T cell response early after vaccination in naive subjects (but
not in COVID-19-recovered individuals) that declines over time.

SARS-CoV-2-specific effector memory T cell enhanced
responses in naive individuals decline along the timeline
Next, we dissected the SARS-CoV-2 spike-specific T cell re-
sponses. First, we analyzed the phenotype of both proliferative
(CFSEY™) and non-proliferative (CFSEP"™) CD4* T cells after
antigen-specific stimulation (Figure S3B). As expected, this
challenge induced the transition from a naive to effector mem-
ory (EM) phenotype in proliferated CD4" T cells (Figures 3A and
3B). Of note, early after vaccination (sample 2), an increase in
the frequency of EM re-expressing CD45RA (EMRA) cells
was observed, while almost 8 months after vaccination (sample
3), a significant central memory (CM) response was induced
(Figures 3A and 3B). Interestingly, the study of these popula-
tions in terms of proliferative capacity showed that previous
exposure to SARS-CoV-2 had no impact on these transitions
along the timeline (Figure 3C). Although in a less robust way,
similar behaviors were observed for CD8" T cells (Figures
S5A-S5C).

We next analyzed intracellular cytokine production in CD4*
T cell subpopulations induced by ex vivo SARS-CoV-2 spike
peptide pool stimulation. A consistent IL-2 production was
observed in naive individuals early after vaccination (sample 2)
that was maintained in effector populations (EMRA and EM) in
the long term (sample 3) (Figure 3D). However, CD4* T cells
from subjects recovered from COVID-19 did not respond to
the SARS-CoV-2 spike peptide pool stimulation at any time (Fig-
ure 3D). In line with previous observations, naive individuals
showed a stronger increment of IL-2 production in the EMRA
and EM population than did subjects recovered from COVID-
19 early after vaccination that declined almost 8 months post-
vaccination (Figure 3E). Again, despite a less robust response
after antigen-specific stimulation, a similar IL-2 expression
pattern was observed in CD8* T cells (Figures S5D and S5E).

These data indicated that previous infections of SARS-CoV-2
dampened T EM cellular responses early after a complete
BNT162b2 vaccination. However, almost 8 months post-vacci-
nation, the SARS-CoV-2 spike-specific T responses were com-
parable between naive subjects and individuals recovered from
COVID-19.

Humoral and cellular activation features are inversely
correlated early after vaccination
Based on the differential behavior of SARS-CoV-2 spike-specific
humoral and cellular responses between naive subjects and in-
dividuals recovered from COVID-19, we explored whether these
features could identify subjects belonging to these two groups,
in an unsupervised manner, in samples 2 and 3. To address
this question, we performed a clustering analysis based on the
different immunological variables studied in this work (Figure 4A).
This algorithm generated a clearer discrimination between naive
subjects and individuals recovered from COVID-19 in sample 2
than in sample 3 (Figure 4A).

Next, we depicted the correlation between the analyzed vari-
ables once they were classified based on their functionality. Along
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Figure 2. SARS-CoV-2 spike-specific cellular ex vivo response following BNT162b2 mRNA vaccination in naive subjects and individuals
recovered from COVID-19

(A) Experimental design of the T cell cellular response ex vivo in PBMCs in samples 2 and 3 after stimulation with SARS-CoV-2 spike peptide pool.

(B) CCL-2 and CXCL10 chemokines production.

(C) IL-2, IL-4, IL-6, IL-10, TNFa, and IFNy production.

(D) Percentage of IL-2* cells in CD4™ (left panel) and CD8" (right panel) T cells.

(E) Increment of IL-2* cells comparing SARS-CoV-2 spike peptide pool-stimulated and non-stimulated CD4* and CD8* T cells.

(F) Frequency of proliferative (CFSE“™) CD4* and CD8" T cells.

(G) Increment of proliferation comparing SARS-CoV-2 spike peptide pool-stimulated and non-stimulated CD4* and CD8T cells.

(B-G) Each dot represents an individual. (B-D and F) Paired Student’s t test (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ***p < 0.0001). (E and G) Mann
Whitney test (ns, not significant; *p < 0.05; **p < 0.01). n = 16 naive, n = 11 recovered from COVID-19.

See also Figure S4.
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Figure 3. Memory populations in SARS-CoV-2 spike-specific CD4* T cells following BNT162b2 mRNA vaccination in naive subjects and
individuals recovered from COVID-19

(A and B) PBMCs were labeled with CFSE and stimulated with SARS-CoV-2 spike peptide pool for 5 days. CD4* T cells were classified according to their
proliferative response in samples 2 and 3. Memory subpopulations were analyzed (naive; CM, central memory; EMRA, effector memory cells re-expressing
CD45RA; EM, effector memory). Frequencies (A) and mean distribution (B) of memory populations in proliferative (O; CFSE®™) and non-proliferative

(O; CFSE™9") CD4* T cells.

(C) Proliferative (CFSE®™) versus non-proliferative (CFSE"9™) ratio of CD4* T cell memory populations in samples 2 () and 3 (<).

(D) Frequency of IL-2* cells in gated naive, CM, EMRA, and EM CD4* T cells stimulated or not with SARS-CoV-2 spike peptide pool.

(E) Increment of frequencies of IL-2* cells comparing SARS-CoV-2 spike pool-stimulated and non-stimulated CD4* T cell subpopulations.

(A, C-E) Each dot represents an individual. (A, C, and D) Paired Student’s t test (ns, not significant; *p < 0.05; **p < 0.01; **p < 0.001; ***p < 0.0001). (E) Mann
Whitney test (ns, not significant; *p < 0.05). n = 16 naive, n = 11 recovered from COVID-19.

See also Figure S3B, S3C, and S5.

these lines, humoral parameters quantified in plasma were con-
fronted to the cellular response after ex vivo cellular stimulation
with SARS-CoV-2 spike peptide pool (Figure 4B). This representa-
tion suggested inverse correlations early after vaccination (sample
2) between humoral and cellular responses, particularly IgG pro-
duction and neutralization capacity of SARS-CoV-2 spike-specific
pro-inflammatory cytokine (CCL2, CXCL10, IFNy, and IL-2) pro-
duction and CD4* T cell proliferation (Figure 4B). However, these
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correlations were attenuated more than 7 months after vaccination
(sample 3) (Figure 4B). The analysis of these correlations
confirmed the statistically significant inverse association between
Ig-based and cellular responses such as CD4* T cell proliferation
or IL-2 productionin sample 2 (Figure 4C). However, no significant
correlations were found between these variables in sample 3 (Fig-
ure 4C). Altogether, these analyses revealed that early after a com-
plete vaccination regimen with BNT162b2, differential humoral
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Figure 4. Differential SARS-CoV-2 spike-specific humoral and cellular responses between naive subjects and individuals recovered from

COVID-19 after vaccination

(A) Heatmap analysis of main humoral and cellular variables of SARS-CoV-2 spike-specific responses. This algorithm showed differential clustering distribution

between naive subjects and individuals recovered from COVID-19.

(B) Spearman correlation matrix heatmap of the main humoral and cellular variables of SARS-CoV-2 spike-specific responses grouped by functionality.

(C) Spearman correlations between different SARS-CoV-2 spike-specific humoral and cellular responses. Top: ratio of CD4* T cells proliferation versus titers of RBD
IgG antibodies; middle: ratio of CD4* T cells proliferation versus S1 1gG antibodies; bottom: IL-2 production in supernatants versus titers of neutralizing antibodies.
R, Spearman’s rank correlation coefficient. p value in Spearman correlation test (ns, not significant; “p < 0.05). White dots represent naive individuals; red dots
represent subjects recovered from COVID-19. n = 16 naive, n = 11 recovered from COVID-19.

and cellular responses were triggered between naive subjects and
individuals recovered from COVID-19 almost eight months after
vaccination, both responses were comparable between both
groups.

DISCUSSION

The generation of mMRNA COVID-19 vaccines such as mRNA-
1273 (Baden et al., 2021) and BNT162b2 (Polack et al., 2020)
represents a revolution in vaccinology and is one of the key pil-
lars of humanity’s eventual success against the pandemic
caused by the SARS-CoV-2 infection. These vaccines are based
on a lipid-nanoparticle-encapsulated mRNA encoding the full-
length spike protein of the SARS-CoV-2 virus (Corbett et al.,
2020; Walsh et al., 2020). The BNT162b2 vaccine was the first
COVID-19 vaccine approved for emergency use by both the

FDA and the EMA. This approval was based on the results of a
clinical trial declaring an efficacy of 95% in preventing COVID-
19 after a two-dose regime 21 days apart (Polack et al., 2020).
Since then, a global vaccination campaign began aiming to
face off the pandemic.

It is worth noting that a medical history of COVID-19 was an
exclusion criterion to be enrolled in the above-mentioned clinical
trial (Polack et al., 2020). Therefore, the potential effect of a pre-
vious infection with SARS-CoV-2 was not anticipated. Here, we
have performed a broad analysis of both humoral and cellular re-
sponses triggered by BNT162b2 vaccination by comparing naive
subjects and individuals recovered from COVID-19 along a time-
line after receiving the complete vaccine regime. We performed a
massive phenotypic study of PBMCs after vaccination, but more
importantly, it was accompanied by the analysis of functional
immunological capabilities such as antibody neutralization and
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T cell activation and proliferation in response to specific SARS-
CoV-2 spike antigens. Notably, our analysis covers responses
after only one vaccine dose but also early (14 days) and late
(more than 7 months) responses after the complete two-dose
vaccination regime.

Previous studies addressing differential responses between
naive subjects and individuals recovered from COVID-19
have focused on the analysis of specific antibodies as a subro-
gated of vaccine efficacy. In phase 1/2 studies, mRNA immuni-
zation with BNT162b2 showed that two doses were requested
to elicit high titers of neutralizing antibodies in naive individuals;
in contrast, in recovered patients, the first immunization acted
as a booster, thus inducing neutralization titers higher than
those observed after the full immunization of naive patients
(Mulligan et al., 2020; Walsh et al., 2020). Along the same lines,
a pioneer study indicated that individuals with a previous
SARS-CoV-2 infection generated stronger humoral responses
than infection-naive subjects after just a single dose of the
BNT162b2 vaccine (Prendecki et al., 2021a). These findings
were confirmed in a cohort of volunteers that received either
the BNT162b2 or the mRNA-1273 vaccine (Krammer et al.,
2021) but also in individuals receiving only one shot of the vac-
cine based on the SARS-CoV-2 spike protein-expressing
adenovirus (Sasikala et al., 2021; Voysey et al., 2021). Never-
theless, follow-up studies showed that anti-spike SARS-CoV-
2 1gGs titers were comparable between naive subjects and
individuals recovered from COVID-19 after 11 to 21 days of
the complete two-dose regime (Ebinger et al., 2021; Levi et
al., 2021). Of note, our data on early humoral responses sup-
port these findings. We also observed that antibody levels
and the neutralizing capacity of plasma from individuals recov-
ered from COVID-19 were higher than that of naive subjects
early after vaccination (samples 1 and 2), an effect suggested
but not fully analyzed in a previous study (Gobbi et al., 2021).
However, more than 7 months after vaccination, individuals
recovered from COVID-19 still showed higher antibody titers
but comparable neutralizing antibodies to naive subjects.
These data highlight the need to discriminate between anti-
body titers and neutralizing capacity. In addition, the analysis
of this neutralizing capacity against specific SARS-CoV-2 var-
iants of concern (Carrefio et al., 2021; Noori et al., 2021) would
improve our understanding about the breadth of the vaccine-
conferred protection.

The relevance of cellular responses after SARS-CoV-2 virus
infection have been studied (Grifoni et al., 2020; Ni et al.,
2020), but data regarding how previous exposure to SARS-
CoV-2 impacts these immunogenic responses along the timeline
after vaccination are still scarce. Memory B cell responses one
week after vaccination were boosted in individuals recovered
from COVID-19 after just one shot of the mRNA vaccine, while
naive subjects required two doses to reach comparable memory
B cell levels (Goel et al., 2021). This response mirrors the produc-
tion of SARS-CoV-2 spike-specific antibodies early after vacci-
nation, as previously discussed.

The analysis of the vaccine-induced humoral responses
7 months after the complete vaccination regime showed a
drop in antibody titers in the long term, in accordance with other
studies (Doria-Rose et al., 2021; Naaber et al., 2021), along with a
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marked decrease in the neutralizing capacity, reaching compa-
rable low levels in both naive subjects and individuals recovered
from COVID-19. Of note, these data do not necessarily indicate
the lack of specific protection against the SARS-CoV-2 virus
because, in line with other studies (Ciabattini et al., 2021; Turner
etal., 2021), we detected circulating SARS-CoV-2 spike protein-
specific B cells even more than 7 months after full vaccination.
Importantly, the levels of these B cells were comparable be-
tween naive subjects and participants recovered from COVID-
19. Considering that SARS-CoV-2 spike-specific memory B cells
showed a switch to an anti-RBD neutralizing phenotype (Sokal
et al., 2021), it is tempting to speculate that long-term protection
already documented for the BNT162b2 vaccine (Thomas et al.,
2021) is warranted, based at least in part on the restimulation
of these cells during a SARS-CoV-2 reinfection. Future studies
will shed light on the efficacy of this specific protective
mechanism.

In our study, we analyzed SARS-CoV-2 spike-specific re-
sponses in T cells after restimulation with a peptide pool
covering this antigen. This assay showed a differential response
between naive subjects and individuals recovered from COVID-
19 early after vaccination, with a more pronounced activation of
CD4* T cells in naive subjects. This was revealed by a higher in-
duction of cytokine production and proliferation after restimula-
tion, particularly in EM cells. The mechanistic implication of
regulatory T cells (Tregs) in this effect (Campbell and Koch,
2011) deserves further studies, as we observed higher levels of
this immunomodulatory population in individuals recovered
from COVID-19 at this early time point after vaccination. Of
note, high levels of SARS-CoV-2 spike-specific CD4" T cells
correlate with a lower COVID-19 predisposition (Sattler et al.,
2020), stressing the relevance of a robust cellular response. Of
note, previously published data indicated a reduction of the
SARS-CoV-2-specific T cell-mediated responses along the
timeline after vaccination (Guerrera et al., 2021). Along these
lines, we observed that T cell responses dropped to comparable
levels in both naive subjects and individuals recovered from
COVID-19.

Our data point toward boosted T cell responses in naive
individuals early after complete BNT162b2 vaccination in a sce-
nario of reduced humoral reactions such as lower SARS-CoV-2
spike-specific 1gGs titers and neutralizing capabilities. This
concerted response allowed an unsupervised clustering of
naive subjects and individuals recovered from COVID-19 that
anticipated inverse correlations between cellular and humoral
immune responses. This is relevant, as it is known that cellular
immunity may contribute to protection against SARS-CoV-2
infection if antibody responses are suboptimal (McMahan
et al., 2021). Therefore, our data suggest that this differential
mechanism could take place early after vaccination in naive in-
dividuals compared with in subjects recovered from COVID-19.
However, more than 7 months after vaccination, humoral and
cellular responses dropped similarly in both naive subjects
and individuals recovered from COVID-19, showing no correla-
tions. Still, memory SARS-CoV-2 spike-specific B cells were
present at comparable levels in both groups, suggestive of an
equivalent long-term protection mechanism (Ciabattini et al.,
2021; Turner et al., 2021).
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In summary, our data indicate that concerted humoral and
cellular responses over time after vaccination should be consid-
ered to define vaccination regimes against COVID-19. This
notion could apply to proposals such as the delay of the second
vaccination dose (Kadire et al., 2021), the administration of just
one shot to a population previously infected with SARS-CoV-2
(Goel et al., 2021), or of a third boosting dose (Mahase, 2021).

Limitations of the study

Sample size is a limitation of this study. Considering the high
number of immune variables analyzed and their complexity, we
decided to perform our study with a not-so-large but well-
controlled cohort of participants. We believe that this approach
allowed us to reach clear conclusions, but a multicentre cohort
with a larger number of patients would be desirable. Further-
more, all stimulations and detections of SARS-CoV-2-specific
responses have been performed against the original S-protein.
The analysis of such responses against SARS-CoV-2 variants
of concern would expand the relevance of our study. Finally,
mechanistic studies would help to explain the divergent re-
sponses observed between naive subjects and individuals
recovered from COVID-19.
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o Data reported in this paper will be shared by the lead contact upon request.
® This paper does not report original code.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Healthy health personnel volunteers and longitudinal samples

A total of 27 healthy health personnel volunteers of the Research Institution of La Paz University Hospital of Madrid (Spain) were
enrolled for this study before vaccination against Spike protein of SARS-CoV-2 (BNT162b2 SARS-CoV-2 mRNA vaccine of Pfizer
& BioNTech). Blood samples were taken at four times: 5 days before the vaccination (sample 0), 14 days after the first dose of vaccine
(sample 1), 14 days after the second dose of vaccine (sample 2) and 230 days after the second dose (sample 3) (Figure 1A). Informed
consent was obtained from all volunteers in accordance with the ethical standards and following the ethical guidelines of the 1975
Declaration of Helsinki. All healthy health personnel data were anonymized before study inclusion and their details are summarized in
Table S1.

Culture conditions of primary and Vero E6 cells

Fresh and thawed Peripheral Blood Mononuclear Cells (PBMCs) were cultured in RPMI 1640 medium containing 10% fetal
bovine serum (FBS), 25 mM HEPES, 2 mM L-glutamine and 1% Penicillin and Streptomycin Mix (Gibco) before some
stimulation to their activation or proliferation. PBMCs were cultured at 37 °C at 5% CO, in a humidified incubator. Vero E6
were cultured in in DMEM containing 10% fetal bovine serum (FBS), 2 mM L-glutamine and 1% Penicillin and Streptomycin Mix
(Gibco).
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METHOD DETAILS

PBMCs isolation, storage and thawing procedure

Peripheral blood mononuclear cells (PBMCs) from healthy health personnel vaccinated with BNT162b2 SARS-CoV-2 mRNA vaccine
were isolated from EDTA anticoagulant venous blood using Ficoll-Plus (GE Healthcare Bio-Sciences) solution according to the man-
ufacturer’s instructions. PBMCs were washed twice with phosphate buffer saline (PBS) and counted using Trypan blue staining. A
part of cells was resuspended in two aliquots of 6 x 10° cells in fetal bovine serum (FBS) containing 10% DMSO (Sigma-Aldrich).
Then, aliquoted PBMCs were slowly frozen (—1°C/minute) using a controlled-grade freezing device (Mr. Frosty, ThermoFisher Sci-
entific) and stored for 24 hours at —80 °C before storage in liquid nitrogen. For use PBMCs, they were rapidly thawed in a water bath at
37°C and washed twice with RPMI 1640 medium containing 10% fetal bovine serum (FBS), 25 mM HEPES, 2 mM L-glutamine and
1% Penicillin and Streptomycin Mix (PenStrep, Gibco).

Plasma collection

Plasma samples from healthy health personnel vaccinated with the Pfizer vaccine against SARS-CoV-2 were obtained from EDTA
anticoagulant venous blood using Ficoll-Plus (GE Healthcare Bio-Sciences) solution according to standard density gradient centri-
fugation method. Then, they were aliquoted and stored at —80°C until use.

Algorithm for dimensionality reduction

Uniform Manifold Approximation and Projection (UMAP) analysis was carried out using all markers listed in Table S2. Data were manu-
ally gated to remove aggregates, dead cells, debris, and CD45 negative events, and then they were sub-sampled to include 60% of
CD45" live singlets from each sample. Subsequently, the UMAP analysis was performed to visualize the different subpopulations in
groups. CD3* and CD19" subpopulations were defined as CD3*/TCRy3 /CD56/CD147/CD4* or CD8*, and CD3/TCRyd /CD567/
CD147/CD19*/CD20", respectively, prior to the UMAP analysis. UMAP settings for CD3* subpopulation used CD45RA, CD28,
CCR7,PD-1,CD27,CD57,CD127,CD25, CD95, CD38 and HLA-DR fluorescent parameters. UMAP settings for CD19* subpopulation
used CD38, CD27,CD19, CD24, IgD, IgM, IgG and CD20 fluorescent parameters. All fluorescent parameters were used besides lived
and CD45" cells. UMAP was run using 15 nearest neighbors, a minimal distance of 0.5, in 2-dimensions and Euclidean distance and
spectral initialization mode (Mclnnes et al., 2020). Data were analyzed using FlowJo (TreeStar) v10.6.2 software.

Detection of anti-spike IgA and IgG SARS-CoV-2 antibodies

For detection of specific antibodies IgA and IgG against the Spike protein of SARS-CoV-2, reserved plasma samples from healthy
health personnel vaccinated with the Pfizer vaccine against SARS-CoV-2 stored at —80°C were thawed and centrifuged at 1000 rela-
tive centrifugal force for 30 minutes to remove particulates prior to use. The title of IgA antibodies in plasma samples were performed
by the bead-based multiplex assay, LEGENDplex SARS-CoV-2 Serological IgA Panel (2-plex, Spike (S1) and receptor binding
domain (RBD) of Spike protein) (Biolegend) according to the manufacturer’s instructions. The title of IgG antibodies in plasma
samples were performed by the bead-based multiplex assay, LEGENDplex SARS-CoV-2 Serological IgG Panel (3-plex, Spike
(S1), receptor binding domain (RBD) of Spike protein and nucleocapsid (N)) (Biolegend) according to the manufacturer’s instructions.
Samples were acquired on a FACSCalibur flow cytometer (BD Biosciences) and data were analyzed using LEGENDplex (Biolegend)
v.8 software. For quantification of IgG antibodies against full Spike protein of SARS-CoV-2, COVID-19 quantitative IgG ELISA kit from
Demeditec Diagnostics GmbH (Ref.: DECOV1901Q) was used. Data obtained were corroborated by Eurofins-Ingenasa kits: INGE-
ZIM®-NP-COVID 19 DR and INGEZIM®-RBD-COVID 19 DR.

Detection of neutralization capacity of plasma against SARS-CoV-2 Spike antigen
The neutralizing antibodies in plasma samples were performed by a competitive immunoassay of ACE2-conjugated beads,
LEGENDplex SARS-CoV-2 Neut. Ab Assay (1-plex) according to the manufacturer’s instructions.

To measure neutralising antibodies titres by means of viral pseudoparticles, diluted plasma samples were preincubated with pseu-
doviruses generated by co-transfection of the plasmid pNL4-3AenvRen and an expression vector for the viral SARS-CoV-2 Spike
(pcDNAS3.1-SCoV2A19-D614) and added at a concentration of 10 ng p24Gag per well to Vero E6 cells in 96-well plates. At 48 h
post infection, viral infectivity was assessed by measuring luciferase activity (Renilla Luciferase Assay (Promega, Madison, WI,
USA) using a 96-well plate luminometer LB 960 Centro XS (Berthold Technologies, Oak Ridge, TN, USA). The titre of neutralising an-
tibodies was calculated as 50% inhibitory dose (neutralising titre 50, NT50), expressed as reciprocal of four-fold serial dilution of heat-
inactivated sera (range 1:32-1:8192), resulting in a 50% reduction of pseudovirus infection compared with control without serum.
Samples below the detection threshold (1:32 serum dilution) were given 1:16 value. Positive and negative controls were included
in the assay and non-specific neutralisation was assessed using a nonrelated pseudovirus expressing the vesicular stomatitis virus
envelope.

Antibodies and immunophenotyping by flow cytometry

Stored PBMCs were thawed as we have described above and they were rested in RPMI 1640 medium containing 10% fetal bovine
serum (FBS), 25 mM HEPES, 2 mM L-glutamine and 1% Penicillin and Streptomycin Mix (Gibco) for 1 hour previous the staining
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protocol. Then, PBMCs were stained with fluorochrome-conjugated antibodies to a multi-colour panel of surface markers listed in
Table S2. Dead cells were excluded using LIVE/DEAD Blue fluorescent reactive dye purchased from Invitrogen and True-Stain Mono-
cyte Blocker (BioLegend) reagent was added prior to the label protocol to block the nonspecific binding of some fluorochromes on
monocytes. Labeled cells were acquired on a Cytek Aurora Spectral Cytometer (Cytek Biosciences). Data were analyzed using
FlowdJo (TreeStar) v10.6.2 software.

SARS-CoV-2 Spike-specific B cells detection

SARS-CoV-2 Spike-specific B cells were detected in sample 3 by means of the SARS-CoV-2 Spike B cell analysis kit provided by
Miltenyi Biotec, following the manufacturer’s instructions. Labeled cells were acquired on a Cytek Aurora Spectral Cytometer (Cytek
Biosciences). Data were analyzed using FlowJo (TreeStar) v10.6.2 software.

SARS-CoV-2 Spike-specific T cell proliferation assays and supernatant collection

Fresh PBMCs from healthy health personnel 14 (sample 2) and 230 (sample 3) days after the second dose of BNT162b2 SARS-CoV-2
mRNA vaccine isolated from EDTA anticoagulant venous blood using Ficoll-Plus (GE Healthcare Bio-Sciences) were washed twice
with phosphate buffer saline (PBS) and counted using Trypan blue staining. Carboxyfluorescein succinimidyl ester (CFSE) was pur-
chased from Thermo Fisher Scientific and used following the manufacturer’s protocol to assess T lymphocyte proliferation. After that,
living CFSE-labeled PBMCs were plated in RPMI 1640 medium containing 10% fetal bovine serum (FBS), 25 mM HEPES, 2 mM
L-glutamine and 1% Penicillin and Streptomycin Mix (Gibco) in a 96-wells plate flat bottom (1,5 x 10° cells/well) and stimulated
or not with Peptivator SARS-CoV-2 Prot_S (Miltenyi Biotec) for 5 days at 37°C at 5% CO,. After proliferation assay, supernatants
were collected, aliquoted and stored at —80°C until use. Then, PBMCs were washed and stained with fluorochrome-conjugated
antibodies to surface markers listed in Table S3.

Supernatant soluble cytokine quantification

Reserved and stored supernatants of PBMCs from healthy health personnel 14 (sample 2) and 230 (sample 3) days after the second
dose of BNT162b2 SARS-CoV-2 mRNA vaccine, stimulated with Peptivator SARS-CoV-2 Prot_S (Miltenyi Biotec) for 5 days, were
thawed. The concentration measurements of cytokines in supernatant samples was performed by the bead-based multiplex assay,
LEGENDplex Human Essential Immune Response Panel (13-plex: IL-18, IL-2, IL-4, IFN-y, TNF-o,, MCP-1 (CCL2), CXCL10, IL-6, IL-8
(CXCL8), IL-10, IL-12p70, IL-17A and Free Active TGF-B1), according to the manufacturer’s instructions. Samples were acquired on a
FACSCalibur flow cytometer (BD Biosciences) and data were analyzed using LEGENDplex (BioLegend) v.8 software.

PBMCs stimulation and intracellular cytokine staining

Thawed PBMCs were stimulated with Peptivator SARS-CoV-2 Prot_S (Miltenyi Biotec) consisting in a pool of 15-mer sequences with
11 amino acids overlap covering the immunodominant sequence domains of the Spike glycoprotein of SARS-CoV-2. Incubation was
performed for 6 hours at 37°C 5% CO, in presence of Golgi-Plug containing Brefeldin A (BD) and Golgi-Stop containing Monensin
(BD) added after 1 hour of the stimulation according to the manufacturer’s instructions. After that, PBMCs were washed and stained
with the surface markers (listed in Table S4) for 30 minutes at room temperature, twice washed, fixed and permeabilized using the
Cytofix/Cytoperm Fixation/Permeabilization Kit (BD) according the manufacturer’s instructions. Subsequently, the fixed and per-
meabilized PBMCs were staining using fluorochrome-conjugated antibodies against intracellular makers listed in Table S4. Labeled
cells were acquired on a Cytek Aurora Spectral Cytometer (Cytek Biosciences). Data were analyzed using FlowdJo (TreeStar) v10.6.2
software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of biological data

Data are expressed as violin and box plots with mean and interquartile ranges, mean + SEM, and single dots representing an indi-
vidual subject each. D’Agostino & Pearson Normality test was performed to all the studied variables. Student’s t-test for two groups
comparison of quantitative variables, either unpaired (t-test or Mann-Whitney) or paired (t-test or Wilcoxon), and ANOVA or Kruskal-
Wallis for multiple groups comparisons of quantitative variables were performed. Correlation between quantitative variables
were evaluated by Spearman’s analysis. All along figures, p-values (P) are denoted as ns: non-significant, *P < 0.05, **P < 0.01,
***P < 0.001, ***P < 0.0001.

In order to perform a visual correlation analysis between the expression of different immune factors, and COVID-19 history of the
subjects, the raw data of each one was normalized using the Z-Score strategy ((value-p)/c). The hierarchical clustering analysis was
developed by heatmap, geom tile and ggplot2 packages (version 1.16.0) in R language (version 4.0.2). This package is available at
https://www.r-graph-gallery.com/heatmap. The clustering was analyzed and distributed by average linkage method, in which the
distance between two clusters is defined as the mean of distances between all pairs of objects, where each pair is made up of
one object from each group. Measurement method between rows and columns was performed by Manhattan method.
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